ANERKANNTE PRÜF-, ÜBERWACHUNGS- UND ZERTIFIZIERUNGSSTELLE nach Landesbauordnung - SAC21; nach Bauproduktengesetz - No. 1109

IFBT GmbH

Hans-Weigel-Str. 2 b D - 04319 Leipzig

Telefon: +49(0)341-652278-0 Telefax: +49(0)341-652278-9

e-mail: dr.hoeher@fassade-und-befestigung.de

Gutachterliche Stellungnahme

Nr. 05-141

vom 08.02.2007

Gegenstand: Tragverhalten des Amo-Max Systems bei Querlasten mit

Abstandsmontage in Wärmedämm-Verbundsystemen

Adolf Würth GmbH & Co. KG Auftraggeber:

74650 Künzelsau

Ansprechpartner: IFBT GmbH - Institut für Fassaden- und Befestigungstechnik

Dipl.-Ing. Falk Wittmann (Tel. +49(0)341-652278-3)

Dr. Lothar Höher

Me Wiche

Geschäftsführer

Dipl.-Ing. F. Wittmann

Projektleiter Befestigungssysteme

Steuer-Nr.: 232/111/02284

BLZ 12030000

Bankverbindung: Deutsche Kreditbank AG

Konto 1391879

Dieser Bericht besteht aus 11 Seiten und 9 Anlagen.

Jedwede Verwendung, einschließlich der Veröffentlichung, auch auszugsweise, bedarf der vorherigen schriftlichen Zustimmung der IFBT GmbH.

Inhalt

- 1 Veranlassung
- 2 Beschreibung des Systems
- 3 Versuche
- 4 Versuchsergebnisse
- 5 Beurteilung der Versuchsergebnisse
- 6 Empfehlungen
- 7 Zusammenfassung

Anlagen

Bilder	
1C120F	Einzelbefestigung mit Amo-Max 120 mm, Dübel W-FAZ/A4 M16
1C120V	Einzelbefestigung mit Amo-Max 120 mm, Dübel W-VIZ-A/A4 M16 mit WIT-VM100
1C200F	Einzelbefestigung mit Amo-Max 200 mm, Dübel W-FAZ/A4 M16
1C200V	Einzelbefestigung mit Amo-Max 200 mm, Dübel W-VIZ-A/A4 M16 mit WIT-VM100
2C120F	Zweifachbefestigung mit Amo-Max 120 mm, Dübel W-FAZ/A4 M16
2C120V	Zweifachbefestigung mit Amo-Max 120 mm, Dübel W-VIZ-A/A4 M16 mit WIT-VM100
2C200F	Zweifachbefestigung mit Amo-Max 200 mm, Dübel W-FAZ/A4 M16
2C200V	Zweifachbefestigung mit Amo-Max 200 mm, Dübel W-VIZ-A/A4 M16 mit WIT-VM100

Gutachten 05-141 Seite 2 von 11

1. Veranlassung

Das Institut für Fassaden- und Befestigungstechnik (IFBT GmbH) wurde von der Firma Adolf Würth GmbH & Co. KG D-74650 Künzelsau mit der Durchführung von Versuchen zur Ermittlung des Last-Verformungs-Verhaltens unter Querkraftbelastung des Amo-Max-Systems beauftragt. Das Amo-Max System soll das Würth Dübelsortiment ergänzen und zur Abstandsmontage in Wärmedämm-Verbundsystemen verwendet werden. Es überbrückt den nichttragenden Dämmstoffbereich zwischen dem tragfähigen Untergrund und dem an der Wand zu befestigenden Anbaugegenstand.

2. Beschreibung des Systems

Das Amo-Max-System besteht aus:

- Distanzhalter aus Aluminium (AlMgSiF 28) zur Überbrückung von Dämmstoffdicken von 60 mm bis 200 mm.,
- Distanzscheibe aus glasfaserverstärktem Kunststoff (PA6),
- Hülse aus glasfaserverstärktem Kunststoff (PA6). Zur Anpassung an verschiedene Dübelsysteme werden die Kunststoffhülsen mit unterschiedlichen Bohrungen (8,2 mm, 10,2 mm, 12,2 mm und 16,2 mm) hergestellt.

Zu untersuchen sind Distanzhalter mit Längen von 120 mm und 200 mm.

3. Versuche

Bei den Untersuchungen zum Tragverhalten des Amo-Max Systems wurden das Dübelsystem und die Länge der Distanzhalter entsprechend der nachstehenden Tabelle variiert.

Zweck der Prüfung	Beton C20/25 vom 21.3.02					
	Amo-Max	WIT-VM 100 mit	W-FAZ/A4 M16			
	Distanzhalter	W-VIZ-A/A4 M16				
Tragverhalten der	120 mm	140/290	140			
Einzelverankerung	200 mm	220/370	220			
Tragverhalten Ankerpaar mit	120 mm	140/290	140			
Achsabstand 100 mm	200 mm	220/370	220			

Als Verankerungsgrund diente die Schalungsseite einer 260 mm dicke Betonplatte mit den Abmessungen 1635x1285 mm² (Stahlschalung). Die Dübel

- WIT-VM 100 mit W-VIZ-A/A4 M16 (ETA-04/0095) und
- W-FAZ/A4 M16 (ETA-99/0011)

wurden nach Angaben des Herstellers bzw. der Zulassungen mit der Mindestverankerungstiefe gesetzt. Nach Ablauf der vorgeschriebenen Aushärtezeit wurden das Amo-Max – System installiert. Als Anbauteile dienten Bleche gemäß Fig. 01.

Gutachten 05-141 Seite 3 von 11

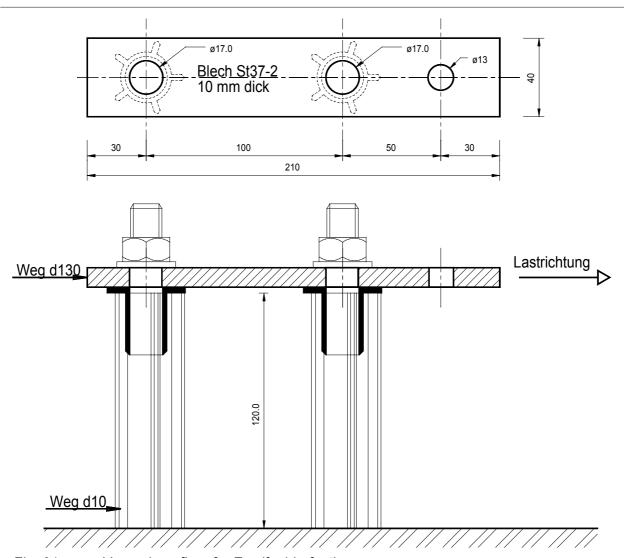


Fig. 01 Versuchsaufbau für Zweifachbefestigung

Die Muttern der Dübel wurden beim

- WIT-VM 100 mit W-VIZ-A/A4 M16 mit 60 Nm und
- W-FAZ/A4 M16 mit einem Drehmoment von 110 Nm

Angezogen. Die Verformungen wurden bei allen Versuchen am Distanzhalter mit einem Abstand von 10 mm von der Betonoberfläche und am 10 mm dicken Anbauteil gemessen. Die Lasten wurden mit Hilfe von 2 Laschen und einem Bolzen \varnothing 12 mm gelenkig über die Bohrung \varnothing 13 mm in das Anbauteil eingeleitet.

Gutachten 05-141 Seite 4 von 11

4. Versuchsergebnisse

Versuchs-Nr.	1C120F.01	1C120F.02	1C120F.03	1C120F.04	1C120F.05	MW	v%	σ
F ^t _{max,i} (kN)	6,37	5,64	7,09	5,03	6,77	6,18	13,60%	0,84
$\delta_{i,10}$ (mm)	0,67	0,95	0,90	0,98	0,87	0,87	13,96%	0,122
$F^{T}(\delta_{i,10}=1$ mm) [kN]								
$\delta_{i,130}$ (mm)	10,54	10,59	10,63	10,58	10,45			
$F^{T}(\delta_{i,130}=1mm)$ [kN]	1,10	1,02	1,45	1,03	1,52	1,22	19,71%	0,241
$F^{T}(\delta_{i,130}=2mm)$ [kN]	1,60	1,67	2,22	1,48	2,40	1,87	21,78%	0,408
$F^{T}(\delta_{i,130}=5mm)$ [kN]	3,11	3,17	4,21	2,56	4,09	3,43	20,51%	0,703
Tab. 01 Versuchsergebnisse Serie Amo-Max 120								

Tab. 01 Versuchsergebnisse Serie Amo-Max 120 mit W-FAZ/A4 M16-140 - Einzelbefestigung

Versuchs-Nr.	1C200F.01	1C200F.02	1C200F.03	1C200F.04	1C200F.05	MW	v%	σ
F ^t _{max,i} (kN)	2,32	2,20	2,63	1,97	1,85	2,19	14,01%	0,31
$\delta_{i,10}$ (mm)	0,34	0,38	0,52	0,70	0,63	0,52	30,39%	0,157
$F^{T}(\delta_{i,10}=1$ mm) [kN]								
$\delta_{i,210}$ (mm)	10,51	10,52	10,51	10,59	10,49			
$F^{T}(\delta_{i,210}=1$ mm) [kN]	0,51	0,51	0,49	0,45	0,42	0,48	8,22%	0,039
$F^{T}(\delta_{i,210}=2mm)$ [kN]	0,89	0,92	1,00	0,78	0,73	0,86	12,23%	0,106
$F^{T}(\delta_{i,210}=5mm)$ [kN]	1,39	1,57	1,75	1,24	1,16	1,42	16,92%	0,240
Tab 02 Vargueboargabhicae Saria Ama May 200								

Tab. 02 Versuchsergebnisse Serie Amo-Max 200 mit W-FAZ/A4 M16-220 - Einzelbefestigung

Versuchs-Nr.	1C120V.01	1C120V.02	1C120V.03	1C120V.04	1C120V.05	MW	v%	σ
F ^t _{max,i} (kN)	7,03	7,78	7,77	7,73	7,84	7,63	4,45%	0,34
$\delta_{i,10}$ (mm)	0,84	0,84	0,88	0,79	0,69	0,81	9,10%	0,074
$F^{T}(\delta_{i,10}=1$ mm) [kN]								
$\delta_{i,130}$ (mm)	10,42	10,54	10,49	10,38	10,36			
$F^{T}(\delta_{i,130}=1$ mm) [kN]	1,09	1,35	1,50	1,46	1,13	1,31	14,23%	0,186
$F^{T}(\delta_{i,130}=2mm)$ [kN]	1,87	2,43	2,53	2,25	1,97	2,21	12,85%	0,284
$F^{T}(\delta_{i,130}=5mm)$ [kN]	4,00	4,63	4,56	4,52	4,49	4,44	5,69%	0,253

Tab. 03 Versuchsergebnisse Serie Amo-Max 120 mit W-VIZ-A/A4 M16-140/290 - Einzelbefestigung

Versuchs-Nr.	1C200V.01	1C200V.02	1C200V.03	1C200V.04	1C200V.05	MW	v%	σ
F ^t _{max,i} (kN)	3,24	2,63	2,65	2,70	3,12	2,87	10,05%	0,29
$\delta_{i,10}$ (mm)	0,64	0,61	0,57	0,72	0,64	0,64	8,57%	0,055
$F^{T}(\delta_{i,10}=1$ mm) [kN]								
$\delta_{i,210}$ (mm)	10,76	10,74	10,53	10,75	10,60			
$F^{T}(\delta_{i,210}=1$ mm) [kN]	0,57	0,47	0,46	0,54	0,56	0,52	9,69%	0,050
$F^{T}(\delta_{i,210}=2mm)$ [kN]	0,94	0,76	0,74	0,87	1,03	0,87	13,93%	0,121
$F^{T}(\delta_{i,210}=5mm)$ [kN]	1,79	1,44	1,44	1,58	1,98	1,64	14,42%	0,237

Tab. 04 Versuchsergebnisse Serie Amo-Max 200 mit W-VIZ-A/A4 M16-220 - Einzelbefestigung

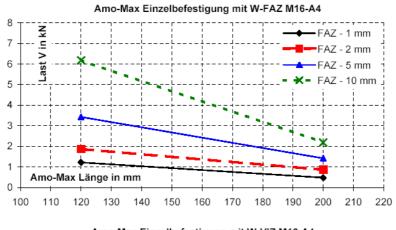
Gutachten 05-141 Seite 5 von 11

Versuchs-Nr.	2C120F.01	2C120F.02	2C120F.03	2C120F.04	2C120F.05	MW	v%	σ
F ^t _{max,i} (kN)	15,00	16,21	16,46	17,09	16,87	16,32	5,02%	0,82
$\delta_{i,10}$ (mm)	0,85	1,15	1,10	0,96	1,19	1,05	13,57%	0,142
$F^{T}(\delta_{i,10}=1$ mm) [kN]								
$\delta_{i,130}$ (mm)	10,22	10,42	10,48	9,44	10,48			
$F^{T}(\delta_{i,130}=1$ mm) [kN]	4,24	3,91	4,48	4,79	3,66	4,21	10,68%	0,450
$F^{T}(\delta_{i,130}=2mm)$ [kN]	6,02	6,25	6,56	7,58	5,39	6,36	12,65%	0,804
$F^{T}(\delta_{i,130}=5mm)$ [kN]	9,75	11,02	10,35	12,27	10,24	10,72	9,10%	0,976
Tab 05 Versuchsergebnisse Serie Amo-May 120								

Tab. 05 Versuchsergebnisse Serie Amo-Max 120 mit W-FAZ/A4 M16-140 – Zweifachbefestigung s=100 mm

Versuchs-Nr.	2C200F.01	2C200F.02	2C200F.03	2C200F.04	2C200F.05	MW	v%	σ
F ^t _{max,i} (kN)	7,80	8,89	7,93	6,27	7,18	7,61	12,74%	0,97
$\delta_{i,10}$ (mm)	1,04	0,84	0,90	0,46	0,46	0,74	35,79%	0,264
$F^{T}(\delta_{i,10}=1$ mm) [kN]								
$\delta_{i,210}$ (mm)	10,34	10,49	10,47	10,55	10,49			
$F^{T}(\delta_{i,210}=1$ mm) [kN]	2,06	1,93	1,81	1,63	1,72	1,83	9,15%	0,167
$F^{T}(\delta_{i,210}$ =2mm) [kN]	3,25	3,29	2,79	2,39	2,78	2,90	12,88%	0,373
$F^{T}(\delta_{i,210}=5mm)$ [kN]	5,33	5,87	4,89	3,78	4,53	4,88	16,23%	0,792

Tab. 06 Versuchsergebnisse Serie Amo-Max 200 mit W-FAZ/A4 M16-220 - Zweifachbefestigung s=100 mm


Versuchs-Nr.	2C120V.01	2C120V.02	2C120V.03	2C120V.04	2C120V.05	MW	v%	σ
F ^t _{max,i} (kN)	19,78	18,38	19,10	19,44	20,55	19,45	4,13%	0,80
$\delta_{i,10}$ (mm)	1,27	1,06	1,41	1,07	1,29	1,22	12,46%	0,152
$F^{T}(\delta_{i,10}=1$ mm) [kN]								
$\delta_{i,130}$ (mm)	10,33	10,50	10,51	10,43	10,51			
$F^{T}(\delta_{i,130}=1$ mm) [kN]	4,77	4,18	4,48	3,81	3,67	4,18	10,99%	0,459
$F^{T}(\delta_{i,130}=2mm)$ [kN]	7,80	6,77	7,21	6,68	6,61	7,01	7,10%	0,498
$F^{T}(\delta_{i,130}=5mm)$ [kN]	14,24	11,84	13,40	13,14	13,67	13,26	6,71%	0,890

Tab. 07 Versuchsergebnisse Serie Amo-Max 120 mit W-VIZ-A/A4 M16-140/290 - Zweifachbefestigung s=100 mm

Versuchs-Nr.	2C200V.01	2C200V.02	2C200V.03	2C200V.04	2C200V.05	MW	v%	σ
F ^t _{max,i} (kN)	9,23	9,18	8,78	8,74	8,53	8,89	3,38%	0,30
$\delta_{i,10}$ (mm)	0,72	0,80	0,84	0,66	0,76	0,76	9,04%	0,068
$F^{T}(\delta_{i,10}=1$ mm) [kN]								
$\delta_{i,210}$ (mm)	11,61	10,40	10,60	10,51	10,44			
$F^{T}(\delta_{i,210}=1mm)$ [kN]	1,92	1,78	1,66	1,64	1,53	1,71	8,73%	0,149
$F^{T}(\delta_{i,210}=2mm)$ [kN]	3,16	2,95	2,78	2,75	2,68	2,86	6,71%	0,192
$F^{T}(\delta_{i,210}=5mm)$ [kN]	5,65	5,49	5,23	5,21	5,21	5,36	3,76%	0,201

Tab. 08 Versuchsergebnisse Serie Amo-Max 200 mit W-VIZ-A/A4 M16-220 - Zweifachbefestigung s=100 mm

Gutachten 05-141 Seite 6 von 11

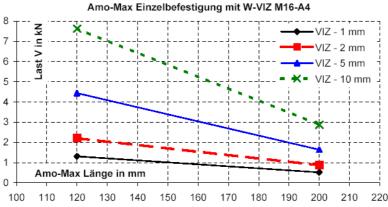
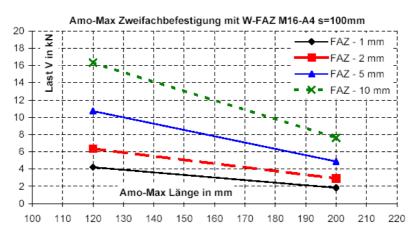
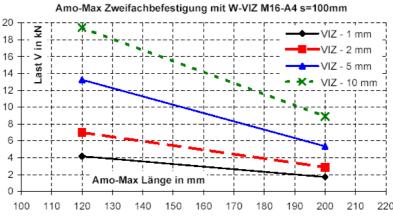
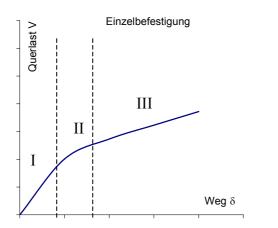



Fig. 02 Ergebnisse Einzelbefestigung




Fig. 03 Ergebnisse Zweifachbefestigung mit s=100 mm

Gutachten 05-141 Seite 7 von 11

5. Beurteilung der Versuchsergebnisse

Bei keinem der Versuche wurde die Bruchlast erreicht. Bei früheren Versuchen mit kleineren Dübeldurchmessern hat sich gezeigt, dass ein Bruch des Gesamtsystems erst nach sehr großen Verformungen zu erwarten ist. Die Last-Verformungskurven zeigen einen immer flacher werdenden Verlauf, bis die Biegebeanspruchung der Dübel in eine reine Zugbelastung übergeht. Alle Versuche wurden deshalb kurz nach Überschreitung einer Verschiebung von 10 mm (gemessen in Höhe des Anbauteiles) abgebrochen.

Die Einzelbefestigung wirkt analog einem teilvorgespannten Kragträger. Die Last-Verschiebungskurven zeigen je nach Länge der Distanzhalter bis zu einer Last von etwa 0,5 bis 1,2 kN einen annähernd linearen Verlauf (Bereich I). Danach bildet sich auf der lastabgewandten Seite zwischen Distanzhalter und Betonoberfläche eine sogenannte "klaffende Fuge". Dabei verringert sich die Steifigkeit der Konstruktion, die Last-Verschiebungskurve wird flacher (Bereich II). Danach schließt sich wieder ein annähernd linearer Bereich (III) an, der durch einen deutlich flacheren Anstieg gekennzeichnet ist.

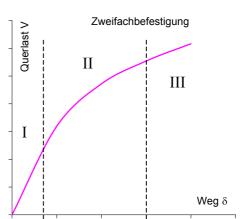


Fig. 04 Charakteristisches Tragverhalten von Einzel- und Zweifachbefestigung

Bei der Zweifachbefestigung kann von einer teilweisen Einspannung der Distanzhalter an der Betonoberfläche <u>und</u> am Anbauteil (Blech 40 mm breit, 10 mm dick) ausgegangen werden. Die Konstruktion ist daher wesentlich steifer und kann größere Lasten parallel zur Betonoberfläche aufnehmen. Im Allgemeinen ist der Übergangsbereich (II) deutlicher ausgeprägt.

Die Versuche haben gezeigt, dass mit beiden Dübelsystemen (W-FAZ und W-VIZ), bezogen auf die jeweiligen Verschiebungen, ähnliche Lastniveaus erreicht werden. Das Verbundankersystem W-VIZ zeigt jedoch aufgrund des praktisch nicht vorhandenen Ringspaltes zwischen Ankerstange und Bohrung deutlich geringere Streuungen der ermittelten Lasten.

6. Empfehlungen

Die im Folgenden empfohlenen Lasten beziehen sich ausschließlich auf Querlasten parallel zur Betonoberfläche. Belastungen aus **Momenten und Normalkräften** bedürfen einer zusätzlichen ingenieurmäßigen **Bemessung entsprechend der Zulassungen** ETA-04/0095 und ETA-99/0011. Alle Verschiebungen und die daraus abgeleiteten Lasten wurden unter kurzzeitiger Beanspruchung ermittelt. Die bei hohem Dauerlastniveau zu erwartenden Kriechverformungen wurden nicht berücksichtigt. Die Werte für Lasten und Verformungen bei Zweifachbefestigung beziehen sich ausschließlich auf den Versuchsaufbau mit dem Abstand der Befestigungspunkte in Lastrichtung von s=100 mm und einem Anbauteil aus Stahl mit den statischen Mindestwerten:

Gutachten 05-141 Seite 8 von 11

Stahlblech St37				
Elastizitätsmodul:	E	$[N/mm^2]$	=	210000
Dicke	t	[mm]	=	10
Breite	b	[mm]	=	40
Flächenträgheitsmoment	I_y	[mm ⁴]	=	3333
Steifigkeit	E*I _V	[kNcm ²]	=	7000

Die ermittelten Last- und Verformungswerte können auf größere Befestigungsabstände s in Lastrichtung übertragen werden, wenn die Steifigkeit $E^*\mathbb{I}_v$ proportional erhöht wird.

Kriterium Tragfähigkeit

Aufgrund einer fehlenden charakteristischen Bruchlast bei Querlast am Anbauteil wird empfohlen, die zulässige Querbelastung parallel zur Betonoberfläche aus der mittleren Last bei der Verschiebung von d=10 mm und einem Sicherheitsbeiwert von γ = 3,0 abzuleiten. Für Längen der Distanzhalter zwischen 120 mm und 200 mm ist linear zu interpolieren. Demnach ergeben sich folgende zulässige Querlasten am Anbauteil:

Amo-Max Einzelbefestigung

Dübelsystem	Distanzhalter	Mittl. Querlast bei 10	Sicherheits-	zulässige
Dubeisystem	Distanzilantei	mm Verschiebung am	beiwert	Querlast am
		Anbauteil	Delweit	Anbauteil
	[mm]	V _m [kN]	γ _∨ [-]	V _T , _{zul} [kN]
			\∧ [_]	
W-FAZ/A4 M16-140	Amo-Max 120	6,18	3	2,1
	Amo-Max 140 ¹)	5,18	3	1,7
	Amo-Max 160 ¹)	4,19	3	1,4
	Amo-Max 180 ¹)	3,19	3	1,1
W-FAZ/A4 M16-220	Amo-Max 200	2,19	3	0,7
W-VIZ-A/A4 M16-140/290	Amo-Max 120	7,63	3	2,5
	Amo-Max 140 ¹)	6,44	3	2,1
	Amo-Max 160 ¹)	5,25	3	1,8
	Amo-Max 180 ¹)	4,06	3	1,4
W-VIZ-A/A4 M16-220	Amo-Max 200	2,87	3	1,0
1) interpolierte Werte	•	•		

Tab. 09 Empfohlene Lasten nach dem Tragfähigkeitskriterium für Einzelbefestigung

Amo-Max Zweifachbefestigung mit s = 100 mm

Distanzhalter	Mittl. Querlast bei 10	Sicherheits-	zulässige
	mm Verschiebung am	beiwert	Querlast am
	Anbauteil		Anbauteil
[mm]	V _m [kN]	γ√ [-]	$V_{T,zul}$ [kN]
Amo-Max 120	16,32	3	5,4
Amo-Max 140 ¹)	14,14	3	4,7
Amo-Max 160 1)	11,97	3	4,0
Amo-Max 180 ¹)	9,79	3	3,3
Amo-Max 200	7,61	3	2,5
Amo-Max 120	19,45	3	6,5
Amo-Max 140 ¹)	16,81	3	5,6
Amo-Max 160 1)	14,17	3	4,7
Amo-Max 180 ¹)	11,53	3	3,8
Amo-Max 200	8,89	3	3,0
	Amo-Max 120 Amo-Max 140 ¹) Amo-Max 160 ¹) Amo-Max 180 ¹) Amo-Max 200 Amo-Max 120 Amo-Max 140 ¹) Amo-Max 160 ¹) Amo-Max 180 ¹)	[mm] Anbauteil V _m [kN] Amo-Max 120 16,32 Amo-Max 140 1) 14,14 Amo-Max 160 1) 11,97 Amo-Max 180 1) 9,79 Amo-Max 200 7,61 Amo-Max 120 19,45 Amo-Max 140 1) 16,81 Amo-Max 160 1) 14,17 Amo-Max 180 1) 11,53	[mm] Anbauteil V _m [kN] γ _V [-] Amo-Max 120 16,32 3 Amo-Max 140 ¹) 14,14 3 Amo-Max 160 ¹) 11,97 3 Amo-Max 180 ¹) 9,79 3 Amo-Max 200 7,61 3 Amo-Max 120 19,45 3 Amo-Max 140 ¹) 16,81 3 Amo-Max 160 ¹) 14,17 3 Amo-Max 180 ¹) 11,53 3

Tab. 10 Empfohlene Lasten nach dem Tragfähigkeitskriterium für Zweifachbefestigung

Gutachten 05-141 Seite 9 von 11

Kriterium Gebrauchstauglichkeit

Es gibt hinsichtlich der Verformungen keine feststehenden Regeln in Normen. Abstimmungen mit den technischen Abteilungen führender WDV-Systemhersteller haben ergeben, dass Verformungen von ca. 1 mm keine Schäden verursachen, wenn die Abdichtungen der für die Amo-Max geöffneten Wärmedämm-Verbundsysteme gesondert geplant und ausgeführt werden. Aus den Versuchen ergeben sich folgende Lasten bei 1 mm Verformung:

Amo-Max Einzelbefestigung

Dübelsystem	Distanzhalter	Mittl. Querlast bei 1 mm Verschiebung am Anbauteil
	[mm]	V _δ , _{zul} [kN]
W-FAZ/A4 M16-140	Amo-Max 120	1,2
	Amo-Max 140 ¹)	1,0
	Amo-Max 160 ¹)	0,9
	Amo-Max 180 ¹)	0,7
W-FAZ/A4 M16-220	Amo-Max 200	0,5
W-VIZ-A/A4 M16-140/290	Amo-Max 120	1,3
	Amo-Max 140 ¹)	1,1
	Amo-Max 160 ¹)	0,9
	Amo-Max 180 ¹)	0,7
W-VIZ-A/A4 M16-220	Amo-Max 200	0,5
1) interpolierte Werte		

Tab. 11 Empfohlene Lasten für Einzelbefestigung

Amo-Max Zweifachbefestigung mit s = 100 mm

Dübelsystem	Distanzhalter	Mittl. Querlast bei 1 mm
-		Verschiebung am Anbauteil
	[mm]	$V_{\delta,zul}$ [kN]
W-FAZ/A4 M16-140	Amo-Max 120	4,2
	Amo-Max 140 1)	3,6
	Amo-Max 160 ¹)	3,0
	Amo-Max 180 ¹)	2,4
W-FAZ/A4 M16-220	Amo-Max 200	1,8
W-VIZ-A/A4 M16-140/290	Amo-Max 120	4,2
	Amo-Max 140 ¹)	3,6
	Amo-Max 160 ¹)	2,9
	Amo-Max 180 ¹)	2,3
W-VIZ-A/A4 M16-220	Amo-Max 200	1,7
1) interpolierte Werte	- L	· · · · · · · · · · · · · · · · · · ·

Tab. 12 Empfohlene Lasten für Zweifachbefestigung Abstand s=100 mm

Aus dem Vergleich der empfohlenen Lasten geht hervor, dass stets das Kriterium der Gebrauchstauglichkeit mit der begrenzten Verformung von $s_{max} = 1$ mm maßgebend ist.

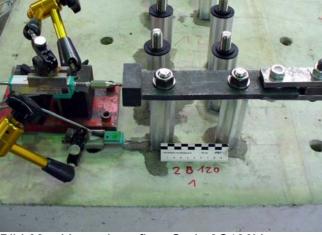
Gutachten 05-141 Seite 10 von 11

7. Zusammenfassung

Amo-Max Einzelbefestigung

Dübelsystem	Distanzhalter	Kriterium Tragfähigkeit (Querlast bei 10 mm	Kriterium Gebrauchstauglichkeit
		Verschiebung und dreifacher	(Querlast bei 1 mm
		Sicherheit)	Verschiebung)
	[mm]	V _T , _{zul} [kN]	$V_{\delta,zul}$ [kN]
W-FAZ/A4 M16-140	Amo-Max 120	2,1	1,2
	Amo-Max 140 ¹)	1,7	1,0
	Amo-Max 160 ¹)	1,4	0,9
	Amo-Max 180 ¹)	1,1	0,7
W-FAZ/A4 M16-220	Amo-Max 200	0,7	0,5
W-VIZ-A/A4 M16-140/290	Amo-Max 120	2,5	1,3
	Amo-Max 140 ¹)	2,1	1,1
	Amo-Max 160 ¹)	1,8	0,9
	Amo-Max 180 ¹)	1,4	0,7
W-VIZ-A/A4 M16-220	Amo-Max 200	1,0	0,5
1) interpolierte Werte			

Tab. 13 Empfohlene Lasten für Einzelbefestigung


Amo-Max Zweifachbefestigung

Dübelsystem	Distanzhalter [mm]	Kriterium Tragfähigkeit (Querlast bei 10 mm Verschiebung und dreifacher Sicherheit) V _T ,zul [kN]	Kriterium Gebrauchstauglichkeit (Querlast bei 1 mm Verschiebung) V _{δ,zul} [kN]
W-FAZ/A4 M16-140	Amo-Max 120	5,4	4,2
	Amo-Max 140 ¹)	4,7	3,6
	Amo-Max 160 ¹)	4,0	3,0
	Amo-Max 180 ¹)	3,3	2,4
W-FAZ/A4 M16-220	Amo-Max 200	2,5	1,8
W-VIZ-A/A4 M16-140/290	Amo-Max 120	6,5	4,2
	Amo-Max 140 ¹)	5,6	3,6
	Amo-Max 160 ¹)	4,7	2,9
	Amo-Max 180 ¹)	3,8	2,3
W-VIZ-A/A4 M16-220	Amo-Max 200	3,0	1,7
1) interpolierte Werte			

Tab. 14 Empfohlene Lasten für Zweifachbefestigung

Gutachten 05-141 Seite 11 von 11

1 B 120 FAZ

Anlage Bilder

Bild 01 Versuchsaufbau Serie 1C120F

Bild 02 Versuchsaufbau Serie 2C120V

Amo-Max

- Distanzhalter
- Hülse
- Scheibe

W-FAZ/A4 M16

W-VIZ-A/A4 M16

Bild 03 Komponenten des Befestigungssystems (www.wuerth.de)

Gutachten 05-141 Anlage

Institut für Fassaden- und Befestigungstechnik Hans-Weigel-Straße 2b 04319 Leipzig

anerkannte Prüf-, Überwachungs- und

Zertifizierungsstelle nach Landesbauordung -SAC21; nach Bauproduktengesetz - No. 1109 Zweck der Prüfung: Versuchsart:

Auftraggeber:

Adolf Würth GmbH & Co. KG Nachweis der Tragfähigkeit Quertragfähigkeit Einfachbefestigung

Versuchsgrundlage: Versuchsprogramm

Dübel / anchor bolt/ cheville:	AMO MAX-120/M16
Material Hülse /sleeve /douille:	-
Konditionierung /condition:	standard
Ankersystem /anchor system:	Fixanker
Spreiz-/spread/ecarter element:	W-FA7/A4 M16-140

Material A4 - 1.4401

Festigkeit/strength f_{vk} [MPa] Festigkeit/strength fuk [MPa] $Ø d_s [mm]$ 16.0 Prüfkörper / specimen: C20/25 Festigkeit/ strength f_{c150} [MPa] 33,07 Dichte / dense ρ [kg/m³] 2308 Feuchtigkeit / moisture /humidite µ trocken Riss /crack/ fissure Δw_{crack} [mm] Bauteildicke / thickness/ h [cm] 26

Größe /size/ dimension [cm] 163,5x128,5 Temperatur /temperature [°C] 16 Herstelldatum /date of manufacture 21.3.02

Position / position

Randabstand c₁ [cm] edge distance c₂ [cm] Achsabstand s₁ [cm] spacing s₂ [cm]

Datum /date: 10.1.07 14:40 Serie / series / série: 1C120F

Dübel Setzen / installation of anchor

Ø Bohrer /drill /meche d_{cut} [mm] 18.3 Bohrvorgang H/S/D Bohrhammer Bohrtiefe/ drill depth h_{drill} [mm] Reinigung / cleaning *) Ankertiefe/anchor depth hef [mm] 85 Drehmoment/ torque moment T_{inst} [Nm] 110 Aushärtezeit t_{hard} [h]

*) L = ausblasen mit Handausbläser / blow out, B = ausbürsten / brush out

Last / Load / Charge (kN) 8	8 Verschiebung 130 mm über der Oberfläche
6	6
5	5
4	4
3	3
2	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
0	0
0 0,5 1 1,5 2	2 0 1 2 3 4 5 6 7 8 9 10 11 12
Ausführung und Auswertung: DiplIng. F. Wittmann	Verschiebung-Displacement-Déplacement (mm)

δ_{130}		δ_{10}
١		
•		
V .	130	
se/ load ce	mm	EBM-50kN

0 0,5	1	1,	5	2 () 1 2	2 3	4	5	6	7	8	9	10	11	12		mm	
Ausführung und Auswertung	DiplIng. F	. Wittmann	1		Versch	iebun	g-D	ispla	acen	nent	-Dép	olac	eme	ent	(mm)	Kraftmessdose	/ load cell	EBM-50kN
Versuchs-Nr. /test No./ n°de l'essai	1C120 F.01	1C120 F.02	1C120 F.03	1C120 F.04	1C120 F.05	١										Mittelwert /average /Moyenne	v%	σ
F ^t _{max,i} (kN	6,37	5,64	7,09	5,03	6,77											6,18	13,60%	0,84
$\delta_{i,10}$ (mm)	0,67	0,95	0,90	0,98	0,87											0,87	13,96%	0,122
$F^{T}(\delta_{i,10}=1$ mm) [kN]																		
$F^{T}(\delta_{i,10}=2mm)$ [kN]																		
$F^{T}(\delta_{i,10}=5mm)$ [kN]																		
$\delta_{i.130}$ (mm)	10,54	10,59	10,63	10,58	10,45													
$F^{T}(\delta_{i,130}=1$ mm) [kN]	1,10	1,02	1,45	1,03	1,52											1,22	19,71%	0,241
$F^{T}(\delta_{i,130}=2mm)$ [kN]	1,60	1,67	2,22	1,48	2,40											1,87	21,78%	0,408
$F^{T}(\delta_{i,130}=5mm)$ [kN]	3,11	3,17	4,21	2,56	4,09											3,43	20,51%	0,703
Bruchart /rupture type/ mode de rupture	-	-	-	-	-													

Bruchlast-breaking load-Charge de ruine $F_{Ru,i}^{t}$ mittlere Bruchlast - average of breaking load $F^t_{\,Rk}$

= $F_{R,m}^t$ - σ^*k ($k_{n=5}$ =3,400; $k_{n=10}$ =2,568) charakt. Bruchlast bei Normalverteilung charact. breaking load for normal distribution charakt. Bruchlast bei log. Normalverteilung

 $\textbf{F}^{t}_{\, \text{Rk,log}}$ charact. breaking load for logarithm. normal distribution

 $\delta_{\text{i}}(\textbf{F}^{t}_{\text{Ru,i}}/2)~\text{Verschiebung, die der Last von }0.5^{\star}\textbf{F}^{t}_{\text{Ru,m}}~\text{entspricht}$ test-displacement corresponding to a $0.5^*F^{t}_{Ru,m}$ load Brucharten - type of rupture - mode de rupture

C Betonversagen - concrete - béton

 C_{c} Betonkegel - concrete cone - cone de béton C_E Betonrand - conctrete edge - bord de béton

 C_{Sp} Spalten - split - fendre

C_{pryout} Betonausbruch lastabgewandte Seite

C_s Betonausbruch lastzugewandte Seite

Po Auszug - pull out

P_T Durchzug - pull trough

S Stahlversagen - steel rupture

S_B Bolzen - bolt - vis

S_T Gewinde - screw - pas de vis

Ss / H Hülse - sleeve - douille

T Gewindeabscheren thread shear - tondre filet de vis

T_B Bolzen - bolt - vis

Dübel / anchor bolt/ cheville:

Institut für Fassaden- und Befestigungstechnik Hans-Weigel-Straße 2b 04319 Leipzig

anerkannte Prüf-, Überwachungs- und Zertifizierungsstelle nach Landesbauordung -SAC21; nach Bauproduktengesetz - No. 1109

AMO MAX-120/M16

Auftraggeber: Adolf Würth GmbH & Co. KG
Zweck der Prüfung: Nachweis der Tragfähigkeit
Versuchsart: Quertragfähigkeit Einfachbefestigung

C20/25

Versuchsgrundlage: Versuchsprogramm

-

Prüfkörper / specimen:

		•	
Material Hülse /sleeve /douille:	-	Festigkeit/ strength f _{c150} [MPa]	33,07
Konditionierung /condition:	standard	Dichte / dense ρ [kg/m³]	2308
Ankersystem /anchor system:	Injektion WIT-VM100	Feuchtigkeit / moisture /humidite μ	trocken
Spreiz-/spread/ecarter element:	W-VIZ-A/A4 M16-140/2	Riss /crack/ fissure Δw_{crack} [mm]	-
Material	A4 - 1.4401	Bauteildicke / thickness/ h [cm]	26
Festigkeit/strength f _{yk} [MPa]	-	Größe /size/ dimension [cm]	163,5x128,5
Festigkeit/strength f _{uk} [MPa]	-	Temperatur /temperature [°C]	16
Ø d_s [mm]	16,0	Herstelldatum /date of manufacture	21.3.02

Dübel Setzen / installation of anchorØ Bohrer /drill /meche dcut [mm]18,3Bohrvorgang H/S/DBohr

Aushärtezeit t_{hard} [h] >1

Position / position

Randabstand c_1 [cm] - edge distance c_2 [cm] - Achsabstand s_1 [cm] - spacing s_2 [cm] -

 Datum /date:
 8.1.07 9:43

 Serie / series / série:
 1C120V

*) L = ausblasen mit Handausbläser / blow out, B = ausbürsten / brush out

) L = ausbiaseri filit fiaridausbiaser / blow out, b = ausbursteri /	brush out
Last / Load / Charge (kN)	-, 10 T., 400 ", -T-7-7-1
Verschiebung 10 mm über 9 – der Oberfläche	9 - der Oberfläche
8 +	_; 8 + - +
7	7
6	6 +
5 +	
4 +	4 + - +
3	3 10120.01
2 + 1	2 10120.02
1	_ 1 + 1 1C120.04
0	0
0 0,5 1 1,5	2 0 1 2 3 4 5 6 7 8 9 10 11 12
Ausführung und Auswertung: DiplIng. F. Wittmann	Verschiebung-Displacement-Déplacement (mm)
Versuchs-Nr /test No / Lavas Lavas Lavas	10100 10100

δ_{130}	\ \ \	δ_{10}
Ī		
V Tose/ load co	130 mm	EBM-50kN

0 0,5	5	1	1,	,5	2	0 1	2	2 3	4	5	6	7	8	9	10	11	12		₩mm	
Ausführung und Auswe	ertung:	DiplIng. F	. Wittmann			Vers	chie	ebung	g-Di	spla	cen	nent	-Dép	olac	eme	ent	(mm)	Kraftmessdose	/ load cell	EBM-50kN
Versuchs-Nr. /test n°de l'essai	No./	1C120 V.01	1C120 V.02	1C120 V.03	1C120 V.04	1C1 V.0												Mittelwert /average /Moyenne	v%	σ
$F^t_{max,i}$	(kN)	7,03	7,78	7,77	7,73	7,8	34											7,63	4,45%	0,34
$\delta_{i,10}$ (r	nm)	0,84	0,84	0,88	0,79	0,6	9											0,81	9,10%	0,074
$F^{T}(\delta_{i,10}=1mm)$	[kN]																			
$F^{T}(\delta_{i,10}=2mm)$	[kN]																			
$F^{T}(\delta_{i,10}=5mm)$	[kN]																			
$\delta_{\rm i.130}$ (r	nm)	10,42	10,54	10,49	10,38	10,	36													
$F^{T}(\delta_{i,120}=1mm)$	[kN]	1,09	1,35	1,50	1,46	1,1	3											1,31	14,23%	0,186
$F^{T}(\delta_{i,130}=2mm)$	[kN]	1,87	2,43	2,53	2,25	1,9	7											2,21	12,85%	0,284
$F^{T}(\delta_{i,130}=5mm)$	[kN]	4,00	4,63	4,56	4,52	4,4	19											4,44	5,69%	0,253
Bruchart /rupture t	,,	-	-	-	-	-														

 $\begin{array}{ll} F^t_{Ru,l} & \text{Bruchlast-breaking load-Charge de ruine} \\ F^t_{Ru,m} & \text{mittlere Bruchlast - average of breaking load} \\ F^t_{Rk} & = F^t_{R,m} - \sigma^* k & (k_{n=5} = 3,400; \, k_{n=10} = 2,568) \\ & \text{absolut. Prublect bei Negmetating} \\ \end{array}$

= Γ_{R,m}-σ⁻κ (κ_{n=5}-3,40υ; κ_{n=10}-2,508) charakt. Bruchlast bei Normalverteilung charact. breaking load for normal distribution charakt. Bruchlast bei log. Normalverteilung

Ft Rk,log charakt. Bruchlast bei log. Normalverteilung charact. breaking load for logarithm. normal distribution

 $\delta_{\rm i}({\sf F}^{\rm l}_{{\sf Ru},{\sf i}}/2)$ Verschiebung, die der Last von $0.5^{*}{\sf F}^{\rm l}_{{\sf Ru},m}$ entspricht test-displacement corresponding to a $0.5^{*}{\sf F}^{\rm l}_{{\sf Ru},m}$ load

Brucharten - type of rupture - mode de rupture

C Betonversagen - concrete - béton C_c Betonkegel - concrete cone - cone de béton

 C_{c} Betonkegel - concrete cone - cone de béton C_{E} Betonrand - conctrete edge - bord de béton C_{Sp} Spalten - split - fendre

C_{pryout} Betonausbruch lastabgewandte Seite C_s Betonausbruch lastzugewandte Seite

P_o Auszug - pull out P_T Durchzug - pull trough S Stahlversagen - steel rupture

S_B Bolzen - bolt - vis

 S_T Gewinde - screw - pas de vis

S_S / H Hülse - sleeve - douille

T Gewindeabscheren thread shear - tondre filet de vis

T_B Bolzen - bolt - vis

Institut für Fassaden- und Befestigungstechnik Hans-Weigel-Straße 2b 04319 Leipzig

anerkannte Prüf-, Überwachungs- und

SAC21; nach Bauproduktengesetz - No. 1109

Zweck der Prüfung: Versuchsart:

Auftraggeber:

Adolf Würth GmbH & Co. KG Nachweis der Tragfähigkeit Quertragfähigkeit Einzelbefestigung

Zertifizierungsstelle nach Landesbauordung -

Versuchsgrundlage: Versuchsprogramm

Dübel / anchor bolt/ cheville:	AMO MAX-200/M16
Material Hülse /sleeve /douille:	-
Konditionierung /condition:	standard
Ankersystem /anchor system:	Fixanker

Spreiz-/spread/ecarter element: W-FAZ/A4 M16-220 A4 - 1.4401

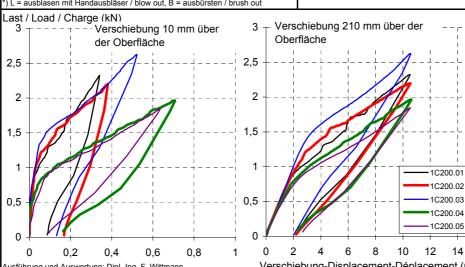
Festigkeit/strength f_{vk} [MPa] Festigkeit/strength fuk [MPa] $Ø d_s [mm]$ 16,0

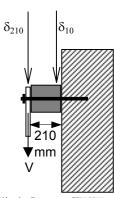
C20/25 Prüfkörper / specimen: Festigkeit/ strength f_{c150} [MPa] 33,07 Dichte / dense ρ [kg/m³] 2308 Feuchtigkeit / moisture /humidite µ trocken Riss /crack/ fissure Δw_{crack} [mm] Bauteildicke / thickness/ h [cm] 26 Größe /size/ dimension [cm] 163,5x128,5

Temperatur /temperature [°C] 16 Herstelldatum /date of manufacture 21.3.02

Dübel Setzen / installation of anchor

Ø Bohrer /drill /meche d_{cut} [mm] 16,3 Bohrvorgang H/S/D Bohrhammer Bohrtiefe/ drill depth hdrill [mm]


Reinigung / cleaning *) Ankertiefe/anchor depth hef [mm] 85 Drehmoment/ torque moment T_{inst} [Nm] 110 Aushärtezeit t_{hard} [h]


Position / position

Randabstand c₁ [cm] edge distance c₂ [cm] Achsabstand s₁ [cm] spacing s₂ [cm]

Datum /date: 10.1.07 13:20 Serie / series / série: 1C200F

*) L = ausblasen mit Handausbläser / blow out, B = ausbürsten / brush out

0 +	1	1		0		'	,	' '				- -	
0 0,2 0	0,4	0,6	0,8	1	0 2	4	6	8 10) 12	14			
Ausführung und Auswertung:	DiplIng. F	. Wittmann			Verschie	ebung-D	isplacei	ment-De	placeme	ent (mm)	Kraftmessdose	/ load cell	EBM-50kN
Versuchs-Nr. /test No./ n°de l'essai	1C200 F.01	1C200 F.02	1C200 F.03	1C200 F.04	1C200 F.05						Mittelwert /average /Moyenne	v%	σ
F ^t _{max,i} (kN)	2,32	2,20	2,63	1,97	1,85						2,19	14,01%	0,31
$\delta_{i,10}$ (mm)	0,34	0,38	0,52	0,70	0,63						0,52	30,39%	0,157
$F^{T}(\delta_{i,10}=1mm)$ [kN]													
$F^{T}(\delta_{i,10}=2mm)$ [kN]													
$F^{T}(\delta_{i,10}=5mm)$ [kN]													
$\delta_{i,210}$ (mm)	10,51	10,52	10,51	10,59	10,49						10,52	0,34%	0,036
$F^{T}(\delta_{i,210}=1$ mm) [kN]	0,51	0,51	0,49	0,45	0,42						0,48	8,22%	0,039
$F^{T}(\delta_{i,210}=2mm)$ [kN]	0,89	0,92	1,00	0,78	0,73						0,86	12,23%	0,106
$F^{T}(\delta_{i,210}=5mm)$ [kN]	1,39	1,57	1,75	1,24	1,16						1,42	16,92%	0,240
Bruchart /rupture type/ mode de rupture	-	-	-	-	-								

 $\textbf{F}_{\,Ru,i}^{t}$ Bruchlast-breaking load-Charge de ruine

mittlere Bruchlast - average of breaking load $\mathsf{F}^t_{\,\mathsf{Rk}}$ = $F_{R,m}^{t}$ - $\sigma^{*}k$ ($k_{n=5}$ =3,400; $k_{n=10}$ =2,568) charakt. Bruchlast bei Normalverteilung charact. breaking load for normal distribution

 $F^t_{\,Rk,log}$ charakt. Bruchlast bei log. Normalverteilung charact. breaking load for logarithm. normal distribution

 $\delta_{\text{i}}(\text{F}^{t}_{\text{Ru},\text{i}}/\text{2})~\text{Verschiebung, die der Last von }0.5^{\star}\text{F}^{t}_{\text{Ru},\text{m}}~\text{entspricht}$ test-displacement corresponding to a $0.5^*F^t_{Ru,m}$ load Brucharten - type of rupture - mode de rupture

C Betonversagen - concrete - béton

 C_{c} Betonkegel - concrete cone - cone de béton C_E Betonrand - conctrete edge - bord de béton

 C_{Sp} Spalten - split - fendre

Cpryout Betonausbruch lastabgewandte Seite

C_s Betonausbruch lastzugewandte Seite

Po Auszug - pull out

P_T Durchzug - pull trough

S Stahlversagen - steel rupture

S_B Bolzen - bolt - vis

S_T Gewinde - screw - pas de vis

Ss / H Hülse - sleeve - douille T Gewindeabscheren -

thread shear - tondre filet de vis

T_B Bolzen - bolt - vis

Dübel / anchor bolt/ cheville:

Institut für Fassaden- und Befestigungstechnik Hans-Weigel-Straße 2b

04319 Leipzig anerkannte Prüf-, Überwachungs- und Zertifizierungsstelle nach Landesbauordung -SAC21; nach Bauproduktengesetz - No. 1109

AMO MAX-200/M16

Auftraggeber: Adolf Würth GmbH & Co. KG
Zweck der Prüfung: Nachweis der Tragfähigkeit
Versuchsart: Quertragfähigkeit Einzelbefestigung

C20/25

Versuchsgrundlage: Versuchsprogramm

-

Prüfkörper / specimen:

Material Hülse /sleeve /douille:	-	Festigkeit/ strength f _{c150} [MPa]	33,07
Konditionierung /condition:	standard	Dichte / dense ρ [kg/m³]	2308
Ankersystem /anchor system:	Injektion WIT-VM100	Feuchtigkeit / moisture /humidite μ	trocken
Spreiz-/spread/ecarter element:	W-VIZ-A/A4 M16-220/3	Riss /crack/ fissure ∆w _{crack} [mm]	-
Material	A4 - 1.4401	Bauteildicke / thickness/ h [cm]	26
Festigkeit/strength f _{yk} [MPa]	-	Größe /size/ dimension [cm]	163,5x128,5
Festigkeit/strength f _{uk} [MPa]	-	Temperatur /temperature [°C]	16

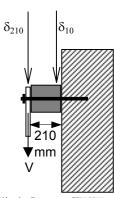
Festigkeit/strength f_{uk} [MPa] - Temperatur /temperature [°C] 16
Ø d_s [mm] 16,0 Herstelldatum /date of manufacture 21.3.02

Dübel Setzen / installation of anchor

Ø Bohrer /drill /meche d_{cut} [mm]18,3Bohrvorgang H/S/DBohrhammerBohrtiefe/ drill depth h_{drill} [mm]130Reinigung / cleaning *)LLBBLL

Ankertiefe/anchor depth h_{ef} [mm] 130 Drehmoment/ torque moment T_{inst} [Nm] 60 Aushärtezeit t_{hard} [h] >1

Position / position


Randabstand c_1 [cm] - edge distance c_2 [cm] - Achsabstand s_1 [cm] - spacing s_2 [cm] -

 Datum /date:
 8.1.07 11:31

 Serie / series / série:
 1C200V

*) L = ausblasen mit Handausbläser / blow out, B = ausbürsten / brush out

,		,											
	erschiebu	•	nm über	4 - Verschiebung 210 mm über der									
3,5 + +	r Oberflä	iche -		 3,5		ac e 		I- I		<u>l</u>			
3	-¦	/		3	+	ا ا – – – – – ا		//	7 				
2,5		1	- 	2,5	+	i 	/	1-1/1					
2		_/		2	+								
1,5				1,5	+			<u> </u> -	1C20				
1 + 1		- 		1	+				1C20	0.02 -i			
0,5	_	- 	- 	0,5					1C20 1C20 1C20	0.04			
0 + 77	1	1	+	ˈ 0	/ //				1020	0.03			
,	*	0,6	0,8	1	0	5	5	10		15			
Ausführung und Auswertung:	DiplIng. F	. Wittmann	1		Verschie	ebung-D	isplacen	nent-Dép	olaceme	nt (mm) Kra		
Versuchs-Nr. /test No./ n°de l'essai	1C200	1C200	1C200	1C200	1C200						I N		

J 0 1	'		'	'	, ,									
0 0),2 (0,4	0,6	0,8	1	0	5	5	10		15			
Ausführung und Au	uswertung:	DiplIng. F	. Wittmann			Verschie	ebung-D	isplacen	nent-Dép	olacemer	nt (mm)	Kraftmessdose	/ load cell	EBM-50kN
Versuchs-Nr. / n°de l'es		1C200 V.01	1C200 V.02	1C200 V.03	1C200 V.04	1C200 V.05						Mittelwert /average /Moyenne	v%	σ
$F^t_{max,}$	j (kN)	3,24	2,63	2,65	2,70	3,12						2,87	10,05%	0,29
$\delta_{i,10}$	(mm)	0,64	0,61	0,57	0,72	0,64						0,64	8,57%	0,055
$F^{T}(\delta_{i,10}=1n$	nm) [kN]													
$F^{T}(\delta_{i,10}=2n$	nm) [kN]													
$F^{T}(\delta_{i,10}=5n$	nm) [kN]													
$\delta_{\rm i,210}$	(mm)	10,76	10,74	10,53	10,75	10,60								
$F^{T}(\delta_{i,210}=1n$	nm) [kN]	0,57	0,47	0,46	0,54	0,56						0,52	9,69%	0,050
$F^{T}(\delta_{i,210}=2n$	nm) [kN]	0,94	0,76	0,74	0,87	1,03						0,87	13,93%	0,121
$F^{T}(\delta_{i,210}=5n$	nm) [kN]	1,79	1,44	1,44	1,58	1,98						1,64	14,42%	0,237
Bruchart /ruptu mode de ru		-	-	-	-	-								

Ft Bruchlast-breaking load-Charge de ruine Ft Bruchlast - average of breaking load

 $\mathsf{F}^t_{\,\mathsf{Rk}}$

 $= F^{I}_{R,m} - \sigma^{*} k \quad (k_{n=5} = 3,400; \ k_{n=10} = 2,568)$ charakt. Bruchlast bei Normalverteilung charact. breaking load for normal distribution

Ft Rk,log charakt. Bruchlast bei log. Normalverteilung charact. breaking load for logarithm. normal distribution

$$\begin{split} \delta_{\text{I}}(F^{\text{I}}_{\text{Ru},\text{I}}/2) \ \ \text{Verschiebung, die der Last von } 0.5^*F^{\text{I}}_{\text{Ru},\text{m}} \ \text{entspricht} \\ \text{test-displacement corresponding to a } 0.5^*F^{\text{I}}_{\text{Ru},\text{m}} \ \text{load} \end{split}$$

Brucharten - type of rupture - mode de rupture

C Betonversagen - concrete - béton

 C_c Betonkegel - concrete cone - cone de béton C_E Betonrand - conctrete edge - bord de béton C_{Sp} Spalten - split - fendre

C_{pryout} Betonausbruch lastabgewandte Seite C_s Betonausbruch lastzugewandte Seite

 P_o Auszug - pull out P_T Durchzug - pull trough

S Stahlversagen - steel rupture

S_B Bolzen - bolt - vis

 $\boldsymbol{S}_{\boldsymbol{T}}$ Gewinde - screw - pas de vis

 S_S / H Hülse - sleeve - douille T Gewindeabscheren -

thread shear - tondre filet de vis

T_B Bolzen - bolt - vis

Festigkeit/strength fuk [MPa]

 $Ø d_s [mm]$

Institut für Fassaden- und
Befestigungstechnik
Hans-Weigel-Straße 2b
04310 Leinzig

anerkannte Prüf-, Überwachungs- und Zertifizierungsstelle nach Landesbauordung -SAC21; nach Bauproduktengesetz - No. 1109

16,0

Auftraggeber: Adolf Würth GmbH & Co. KG Zweck der Prüfung: Nachweis der Tragfähigkeit Quertragfähigkeit Zweifachbefestigung Versuchsart:

16

21.3.02

Versuchsgrundlage: Versuchsprogramm

Temperatur /temperature [°C]

Herstelldatum /date of manufacture

Dübel / anchor bolt/ cheville:	AMO MAX-120/M16	Prüfkörper / specimen:	C20/25
Material Hülse /sleeve /douille:	-	Festigkeit/ strength f _{c150} [MPa]	33,07
Konditionierung /condition:	standard	Dichte / dense ρ [kg/m³]	2308
Ankersystem /anchor system:	Fixanker	Feuchtigkeit / moisture /humidite μ	trocken
Spreiz-/spread/ecarter element:	W-FAZ/A4 M16-140	Riss /crack/ fissure Δw _{crack} [mm]	-
Material	A4 - 1.4401	Bauteildicke / thickness/ h [cm]	26
Festigkeit/strength f _{yk} [MPa]	-	Größe /size/ dimension [cm]	163,5x128,5

Dübel Setzen / installation of anchor Ø Bohrer /drill /meche d_{cut} [mm] 18,3 Bohrvorgang H/S/D Bohrhammer Bohrtiefe/ drill depth h_{drill} [mm] Reinigung / cleaning *) Ankertiefe/anchor depth hef [mm] 85

Drehmoment/ torque moment T_{inst} [Nm] 110 Aushärtezeit t_{hard} [h]

Position / position

Randabstand c₁ [cm] edge distance c₂ [cm] Achsabstand s₁ [cm] 10 spacing s₂ [cm]

Datum /date: 10.1.07 14:50 Serie / series / série: 2C120F

*) L = ausblasen mit Handausbläser / blow out, B = ausbürsten / brush out

) L = ausbiasen mit Ha	anuausi	biasei / bio	w out, B =	auspursier	17 brush ot	JL							
Last / Load / Cha 20 —	ırge (k	(N)		1	, 20	T Vorse	hiohuno	130 mr	n übor	- T - J -	-, 1		
18 +			. – – – -	 	18	1	berfläch		ubei	- 			
16 +		PA	7	 	16	+ - +	 						
14		A //	!	 	14	+				11	 - 		δ_{130}
12		-/- -			1 12	+							
10	2	<i> - -</i>		<u> </u>	10	+	/-						₩ \
8	//	// -		; ; !	8	+					-	_	_ 🕌
6		/ 	. = = = = =	† !	1 6	+-+	-	+		2C120	1.	s ₁	
4	4		ng 10 mi	m über	4	+-/			/ - -	2C120	0.03	+	- #
2	der /	Oberfläd	cne	ı	2	7:	 		- -	2C120	1.1		V
0 +		+		-	─ 0	1 -	1 1	1 1			 		v ↓130
0 0,5 Ausführung und Auswe		1 DiplIna. F		,5 1	2	0 1 Verschi	2 3 4 ebuna-[4 5 6 Displace	78 ment-Dé		11 12 nt (mm)	Kraftmessdose	√mm / load cell
Versuchs-Nr. /test n°de l'essai		2C120	2C120	2C120		2C120					()	Mittelwert /average	v%
		F.01	F.02	F.03	F.04	F.05						/Moyenne	
F t max i	(kN)	15,00	16,21	16,46	17,09	16,87						16,32	5,02%

						 		` '			
Versuchs-Nr. /test No./ n°de l'essai	2C120 F.01	2C120 F.02	2C120 F.03	2C120 F.04	2C120 F.05				Mittelwert /average /Moyenne	v%	σ
F ^t _{max,i} (kN)	15,00	16,21	16,46	17,09	16,87				16,32	5,02%	0,82
$\delta_{i,10}$ (mm)	0,85	1,15	1,10	0,96	1,19				1,05	13,57%	0,142
$F^{T}(\delta_{i,10}=1$ mm) [kN]		15,13	15,76		15,43						
$F^{T}(\delta_{i,10}=2mm)$ [kN]											
$F^{T}(\delta_{i,10}=5mm)$ [kN]											
$\delta_{i.130}$ (mm)	10,22	10,42	10,48	9,44	10,48						
$F^{T}(\delta_{i,130}=1$ mm) [kN]	4,24	3,91	4,48	4,79	3,66				4,21	10,68%	0,450
$F^{T}(\delta_{i,130}=2mm)$ [kN]	6,02	6,25	6,56	7,58	5,39				6,36	12,65%	0,804
$F^{T}(\delta_{i,130}=5mm)$ [kN]	9,75	11,02	10,35	12,27	10,24				10,72	9,10%	0,976
Bruchart /rupture type/ mode de rupture	-	-	-	-	-						

 $F_{\,Ru,i}^t$ Bruchlast-breaking load-Charge de ruine mittlere Bruchlast - average of breaking load $\mathsf{F}^{\mathsf{t}}_{\mathsf{Rk}}$ = $F_{R,m}^t$ - σ^*k ($k_{n=5}$ =3,400; $k_{n=10}$ =2,568) charakt. Bruchlast bei Normalverteilung charact. breaking load for normal distribution

 $F^t_{\,Rk,log}$ charakt. Bruchlast bei log. Normalverteilung charact. breaking load for logarithm. normal distribution

 $\delta_{\text{i}}(\textbf{F}^{t}_{\text{Ru,i}}/2)~\text{Verschiebung, die der Last von }0.5^{\star}\textbf{F}^{t}_{\text{Ru,m}}~\text{entspricht}$ test-displacement corresponding to a 0.5*F $^{t}_{\,\text{Ru},\text{m}}$ load Brucharten - type of rupture - mode de rupture

C Betonversagen - concrete - béton

 C_{c} Betonkegel - concrete cone - cone de béton C_E Betonrand - conctrete edge - bord de béton

C_{Sp} Spalten - split - fendre

C_{pryout} Betonausbruch lastabgewandte Seite

C_s Betonausbruch lastzugewandte Seite

Po Auszug - pull out

P_T Durchzug - pull trough

S Stahlversagen - steel rupture

EBM-50kN

S_B Bolzen - bolt - vis

S_T Gewinde - screw - pas de vis

S_S / H Hülse - sleeve - douille T Gewindeabscheren -

thread shear - tondre filet de vis

T_B Bolzen - bolt - vis

Dübel / anchor bolt/ cheville:

Institut für Fassaden- und Befestigungstechnik Hans-Weigel-Straße 2b 04319 Leipzig

Zertifizierungsstelle nach Landesbauordung -SAC21; nach Bauproduktengesetz - No. 1109

anerkannte Prüf-, Überwachungs- und

Auftraggeber: Adolf Würth GmbH & Co. KG Zweck der Prüfung: Nachweis der Tragfähigkeit Quertragfähigkeit Zweifachbefestigung Versuchsart:

Versuchsgrundlage: Versuchsprogramm

AMO MAX-120/M16

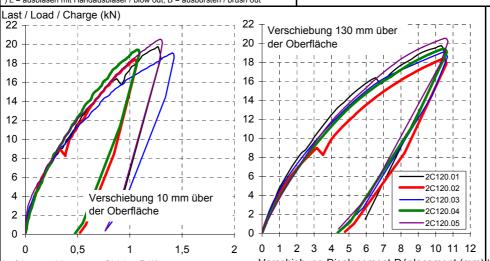
Material Hülse /sleeve /douille: Konditionierung /condition: standard Ankersystem /anchor system: Injektion WIT-VM100 W-VIZ-A/A4 M16-140/29 Spreiz-/spread/ecarter element: A4 - 1.4401

Festigkeit/strength f_{vk} [MPa] Festigkeit/strength fuk [MPa] 16,0 $Ø d_s [mm]$

C20/25 Prüfkörper / specimen: Festigkeit/ strength f_{c150} [MPa] 33,07 Dichte / dense ρ [kg/m³] 2308 Feuchtigkeit / moisture /humidite µ trocken Riss /crack/ fissure Δw_{crack} [mm] Bauteildicke / thickness/ h [cm] 26

Größe /size/ dimension [cm] 163,5x128,5 Temperatur /temperature [°C] 16 Herstelldatum /date of manufacture 21.3.02

Dübel Setzen / installation of anchor


Ø Bohrer /drill /meche d_{cut} [mm] 18,3 Bohrvorgang H/S/D Bohrhammer Bohrtiefe/ drill depth hdrill [mm] LLBBLL Reinigung / cleaning *) Ankertiefe/anchor depth hef [mm] 130 Drehmoment/ torque moment T_{inst} [Nm] 60 Aushärtezeit t_{hard} [h] >1

Position / position Randabstand c₁ [cm]

edge distance c₂ [cm] Achsabstand 10 s₁ [cm] spacing s₂ [cm]

Datum /date: 8.1.07 Serie / series / série: 2C120V

*) L = ausblasen mit Handausbläser / blow out, B = ausbürsten / brush out

 $\delta_{130} \\$

 δ_{10}

0	<u>/</u>			_ 0	/ :	 		_	20120).05 ₁		V <u>I</u> ₁₃₀	
0 0,5	1	1,	5	2	0 1 2	2 3 4	5 6	7 8	9 10	11 12		mm	
Ausführung und Auswertung:	DiplIng. F	. Wittmann			Verschie	ebung-D	isplacer	nent-Dé	placeme	nt (mm)	Kraftmessdose		EBM-50kN
Versuchs-Nr. /test No./ n°de l'essai	2C120 V.01	2C120 V.02	2C120 V.03	2C120 V.04	2C120 V.05						Mittelwert /average /Moyenne	v%	σ
F ^t _{max,i} (kN)	19,78	18,38	19,10	19,44	20,55						19,45	4,13%	0,80
$\delta_{i,10}$ (mm)	1,27	1,06	1,41	1,07	1,29						1,22	12,46%	0,152
$F^{T}(\delta_{i,10}=1$ mm) [kN]		18,01		18,83	18,15								
$F^{T}(\delta_{i,10}=2mm)$ [kN]													
$F^{T}(\delta_{i,10}=5mm)$ [kN]													
$\delta_{i.130}$ (mm)	10,33	10,50	10,51	10,43	10,51								
$F^{T}(\delta_{i,130}=1$ mm) [kN]	4,77	4,18	4,48	3,81	3,67						4,18	10,99%	0,459
$F^{T}(\delta_{i,130}=2mm)$ [kN]	7,80	6,77	7,21	6,68	6,61						7,01	7,10%	0,498
$F^{T}(\delta_{i,130}=5mm)$ [kN]	14,24	11,84	13,40	13,14	13,67						13,26	6,71%	0,890
Bruchart /rupture type/ mode de rupture	-		-	-	-								

F' _{Ru,i}	Bruchlast-breaking load-Charge de ruine
$F_{Ru,m}^{t}$	mittlere Bruchlast - average of breaking load
F ^t o.	$= E_{p}^{t} - \sigma^{*}k$ (k ==3.400 k .0=2.568)

charakt. Bruchlast bei Normalverteilung charact. breaking load for normal distribution charakt. Bruchlast bei log. Normalverteilung

 $F^t_{\,Rk,log}$ charact. breaking load for logarithm. normal distribution $\delta_{\text{i}}(\text{F}^{t}_{\text{Ru},\text{i}}/\text{2})~\text{Verschiebung, die der Last von }0.5^{\star}\text{F}^{t}_{\text{Ru},\text{m}}~\text{entspricht}$

test-displacement corresponding to a $0.5^*F^t_{Ru,m}$ load

Brucharten - type of rupture - mode de rupture

C Betonversagen - concrete - béton C_{c} Betonkegel - concrete cone - cone de béton

C_E Betonrand - conctrete edge - bord de béton C_{Sp} Spalten - split - fendre

Cpryout Betonausbruch lastabgewandte Seite C_s Betonausbruch lastzugewandte Seite Po Auszug - pull out

P_T Durchzug - pull trough

S Stahlversagen - steel rupture

S_B Bolzen - bolt - vis

S_T Gewinde - screw - pas de vis

Ss / H Hülse - sleeve - douille T Gewindeabscheren -

thread shear - tondre filet de vis

T_B Bolzen - bolt - vis

Institut für Fassaden- und Befestigungstechnik Hans-Weigel-Straße 2b 04319 Leipzig

anerkannte Prüf-, Überwachungs- und

Auftraggeber: Zweck der Prüfung: Versuchsart:

Adolf Würth GmbH & Co. KG Nachweis der Tragfähigkeit

C20/25

33,07

2308

26

trocken

AMO max Distanzhalter 200 mm, Quertragfähigkeit

Zweifachbefestigung

Versuchsgrundlage: Versuchsprogramm

Prüfkörper / specimen:

Zertifizierungsstelle nach Landesbauordung -SAC21; nach Bauproduktengesetz - No. 1109 Dübel / anchor bolt/ cheville: AMO MAX-200/M16 Material Hülse /sleeve /douille:

Konditionierung /condition: standard Ankersystem /anchor system: Fixanker

Spreiz-/spread/ecarter element: A4 - 1.4401

Festigkeit/strength f_{vk} [MPa] Festigkeit/strength fuk [MPa] 16,0 $Ø d_s [mm]$

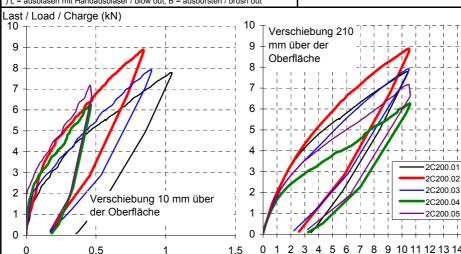
W-FAZ/A4 M16-220

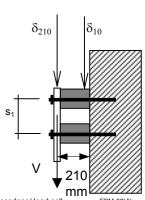
Festigkeit/ strength f_{c150} [MPa] Dichte / dense ρ [kg/m³] Feuchtigkeit / moisture /humidite µ Riss /crack/ fissure Δw_{crack} [mm] Bauteildicke / thickness/ h [cm]

Größe /size/ dimension [cm] 163,5x128,5 Temperatur /temperature [°C] 16 Herstelldatum /date of manufacture 21.3.02

Dübel Setzen / installation of anchor

Ø Bohrer /drill /meche d_{cut} [mm] 18,3 Bohrvorgang H/S/D Bohrhammer


Bohrtiefe/ drill depth hdrill [mm] Reinigung / cleaning *) Ankertiefe/anchor depth hef [mm] 85 Drehmoment/ torque moment T_{inst} [Nm] 110 Aushärtezeit t_{hard} [h]


Position / position

Randabstand c₁ [cm] edge distance c₂ [cm] Achsabstand 10 s₁ [cm] spacing s₂ [cm]

Datum /date: 10.1.07 14:00 2C200F Serie / series / série:

*) L = ausblasen mit Handausbläser / blow out, B = ausbürsten / brush out

0 0,5		1		1,5	0 1 2	3 4 5	6 7	8 9 10	11 12 13	14 15		▼ mr	
Ausführung und Auswertung: DiplIng. F. Wittmann Verschiebung-Displacement-Déplacement (mm) Kraftmessdose/ load cell EBM-50kN											EBM-50kN		
Versuchs-Nr. /test No./ n°de l'essai	2C200 F.01	2C200 F.02	2C200 F.03	2C200 F.04	2C200 F.05						Mittelwert /average /Moyenne	v%	σ
F ^t _{max,i} (kN)	7,80	8,89	7,93	6,27	7,18						7,61	12,74%	0,97
$\delta_{i,10}$ (mm)	1,04	0,84	0,90	0,46	0,46						0,74	35,79%	0,264
$F^{T}(\delta_{i,10}=1$ mm) [kN]	7,59												
$F^{T}(\delta_{i,10}=2mm)$ [kN]													
$F^{T}(\delta_{i,10}=5mm)$ [kN]													
$\delta_{i,210}$ (mm)	10,34	10,49	10,47	10,55	10,49								
$F^{T}(\delta_{i,210}=1$ mm) [kN]	2,06	1,93	1,81	1,63	1,72						1,83	9,15%	0,167
$F^{T}(\delta_{i,210}=2mm)$ [kN]	3,25	3,29	2,79	2,39	2,78						2,90	12,88%	0,373
$F^{T}(\delta_{i,210}=5mm)$ [kN]	5,33	5,87	4,89	3,78	4,53						4,88	16,23%	0,792
Bruchart /rupture type/ mode de rupture	-	-	-	-	-								

Bruchlast-breaking load-Charge de ruine $F_{Ru,i}^t$ mittlere Bruchlast - average of breaking load

 $\mathsf{F}^t_{\,\mathsf{Rk}}$ = $F_{R,m}^{t}$ - $\sigma^{*}k$ ($k_{n=5}$ =3,400; $k_{n=10}$ =2,568) charakt. Bruchlast bei Normalverteilung charact. breaking load for normal distribution

 $F^t_{\,Rk,log}$ charakt. Bruchlast bei log. Normalverteilung charact. breaking load for logarithm. normal distribution

 $\delta_{\text{i}}(\text{F}^{t}_{\text{Ru},\text{i}}/\text{2})~\text{Verschiebung, die der Last von }0.5^{\star}\text{F}^{t}_{\text{Ru},\text{m}}~\text{entspricht}$ test-displacement corresponding to a $0.5^*F^t_{Ru,m}$ load Brucharten - type of rupture - mode de rupture

C Betonversagen - concrete - béton

 C_{c} Betonkegel - concrete cone - cone de béton C_E Betonrand - conctrete edge - bord de béton

 C_{Sp} Spalten - split - fendre

Cpryout Betonausbruch lastabgewandte Seite C_s Betonausbruch lastzugewandte Seite

Po Auszug - pull out

P_T Durchzug - pull trough

S Stahlversagen - steel rupture

S_B Bolzen - bolt - vis

S_T Gewinde - screw - pas de vis

Ss / H Hülse - sleeve - douille T Gewindeabscheren -

thread shear - tondre filet de vis

T_B Bolzen - bolt - vis

Institut für Fassaden- und Befestigungstechnik Hans-Weigel-Straße 2b

04319 Leipzig

anerkannte Prüf-, Überwachungs- und Zertifizierungsstelle nach Landesbauordung -SAC21; nach Bauproduktengesetz - No. 1109 Auftraggeber: Adolf Würth GmbH & Co. KG Zweck der Prüfung: Nachweis der Tragfähigkeit

AMO max Distanzhalter 200 mm, Quertragfähigkeit

Zweifachbefestigung

Versuchsgrundlage: Versuchsprogramm

Position / position

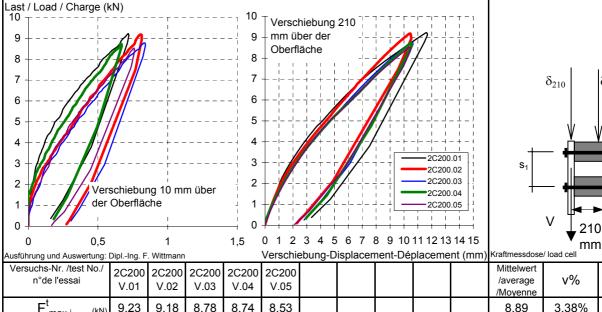
s₂ [cm]

spacing

Versuchsart:

Dübel / anchor bolt/ cheville:	AMO MAX-200/M16	Prüfkörper / specimen:	C20/25
Material Hülse /sleeve /douille:	-	Festigkeit/ strength f _{c150} [MPa]	33,07
Konditionierung /condition:	standard	Dichte / dense ρ [kg/m³]	2308
Ankersystem /anchor system:	Injektion WIT-VM100	Feuchtigkeit / moisture /humidite μ	trocken
Spreiz-/spread/ecarter element:	W-VIZ-A/A4 M16-220/3	Riss /crack/ fissure Δw_{crack} [mm]	-
Material	A4 - 1.4401	Bauteildicke / thickness/ h [cm]	26

Festigkeit/strength f_{vk} [MPa] Größe /size/ dimension [cm] 163,5x128,5


Festigkeit/strength fuk [MPa] Temperatur /temperature [°C] 16 $Ø d_s [mm]$ 16,0 Herstelldatum /date of manufacture 21.3.02

Dübel Setzen / installation of anchor

Ø Bohrer /drill /meche d_{cut} [mm] 18,3 Randabstand c₁ [cm] Bohrvorgang H/S/D Bohrhammer edge distance c₂ [cm] Bohrtiefe/ drill depth hdrill [mm] Achsabstand 10 s₁ [cm] Reinigung / cleaning *) LLBBLL

Ankertiefe/anchor depth hef [mm] 130 Drehmoment/ torque moment T_{inst} [Nm] 60 Datum /date: 8.1.07 13:14 Aushärtezeit t_{hard} [h] >1 2C200V Serie / series / série:

*) L = ausblasen mit Handausbläser / blow out, B = ausbürsten / brush out

Versuchs-Nr. /test No./ n°de l'essai	2C200 V.01	2C200 V.02	2C200 V.03	2C200 V.04	2C200 V.05			Mittelwert /average /Moyenne	v%	σ
F ^t _{max,i} (kN)	9,23	9,18	8,78	8,74	8,53			8,89	3,38%	0,30
$\delta_{i,10}$ (mm)	0,72	0,80	0,84	0,66	0,76			0,76	9,04%	0,068
$F^{T}(\delta_{i,10}=1$ mm) [kN]										
$F^{T}(\delta_{i,10}=2mm)$ [kN]										
$F^{T}(\delta_{i,10}=5mm)$ [kN]										
$\delta_{\rm i.210}$ (mm)	11,61	10,40	10,60	10,51	10,44					
$F^{T}(\delta_{i,210}=1$ mm) [kN]	1,92	1,78	1,66	1,64	1,53			1,71	8,73%	0,149
$F^{T}(\delta_{i,210}=2mm)$ [kN]	3,16	2,95	2,78	2,75	2,68			2,86	6,71%	0,192
$F^{T}(\delta_{i,210}=5mm)$ [kN]	5,65	5,49	5,23	5,21	5,21			5,36	3,76%	0,201
Bruchart /rupture type/ mode de rupture	-	-	-	-	-					

Bruchlast-breaking load-Charge de ruine $F_{Ru,i}^t$

mittlere Bruchlast - average of breaking load $\mathsf{F}^t_{\,\mathsf{Rk}}$

= $F_{R,m}^{t}$ - $\sigma^{*}k$ ($k_{n=5}$ =3,400; $k_{n=10}$ =2,568) charakt. Bruchlast bei Normalverteilung charact. breaking load for normal distribution

 $F^t_{\,Rk,log}$ charakt. Bruchlast bei log. Normalverteilung charact. breaking load for logarithm. normal distribution

 $\delta_{\text{i}}(\text{F}^{\text{t}}_{\text{Ru,i}}\!/\!2)~\text{Verschiebung, die der Last von }0.5^{\star}\text{F}^{\text{t}}_{\text{Ru,m}}$ entspricht test-displacement corresponding to a $0.5^*F^t_{Ru,m}$ load Brucharten - type of rupture - mode de rupture

C Betonversagen - concrete - béton

 C_{c} Betonkegel - concrete cone - cone de béton C_E Betonrand - conctrete edge - bord de béton

 C_{Sp} Spalten - split - fendre Cpryout Betonausbruch lastabgewandte Seite

C_s Betonausbruch lastzugewandte Seite

Po Auszug - pull out P_T Durchzug - pull trough S Stahlversagen - steel rupture

S_B Bolzen - bolt - vis

S_T Gewinde - screw - pas de vis

Ss / H Hülse - sleeve - douille T Gewindeabscheren -

thread shear - tondre filet de vis

T_B Bolzen - bolt - vis