

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-02/0031 vom 1. Oktober 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4

Mechanische Dübel zur Verwendung im Beton

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Herstellwerk W1, Deutschland

22 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601

ETA-02/0031 vom 7. September 2017

Europäische Technische Bewertung ETA-02/0031

Seite 2 von 22 | 1. Oktober 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z59689,18 8.06.01-686/18

Europäische Technische Bewertung ETA-02/0031

Seite 3 von 22 | 1. Oktober 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4 ist ein Dübel aus galvanisch verzinktem Stahl oder nichtrostendem Stahl der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Er umfasst die folgenden Dübeltypen:

- Dübeltyp W-HAZ-B mit Gewindebolzen,
- Dübeltyp W-HAZ-S mit Sechskantschraube,
- Dübeltyp W-HAZ-SK mit Senkscheibe und Senkschraube.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C1 bis C4
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C5 und C6
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C10 und C11
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C7, C8 und C11

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C9

Z59689.18 8.06.01-686/18

Europäische Technische Bewertung ETA-02/0031

Seite 4 von 22 | 1. Oktober 2018

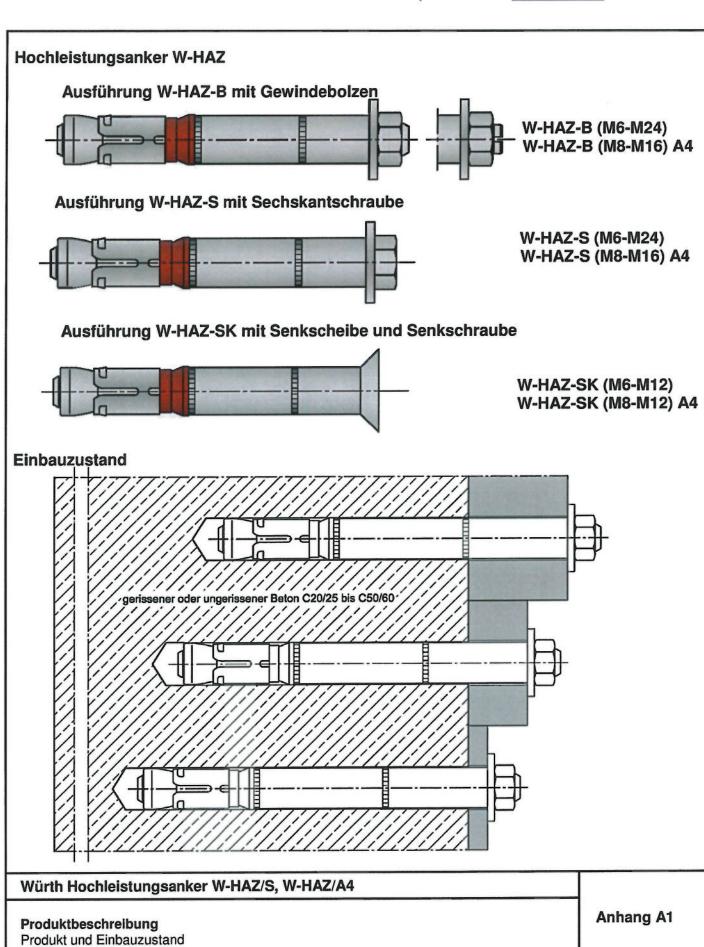
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 1. Oktober 2018 vom Deutschen Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt i.V. Abteilungsleiter

Z59689.18 8.06.01-686/18

A4

SZ

M10

15

25

SK

L

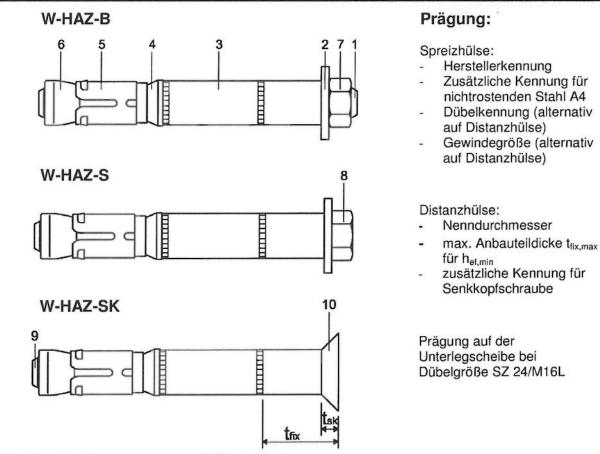


Tabelle A1: Benennung und Werkstoffe

Teil	Benennung	Werkstoffe galvanisch verzinkt ≥ 5 μm, nach EN ISO 4042:1999	Nichtrostender Stahl A4
1	Gewindebolzen	Stahl, Festigkeitsklasse 8.8, EN ISO 898-1:2013	Nichtrostender Stahl, 1.4401, 1.4404 oder 1.4571, EN 10088:2014
2	Unterlegscheibe	Stahl, EN 10139:2016	Nichtrostender Stahl, EN 10088:2014
3	Distanzhülse	Stahlrohr EN 10305-2:2016; EN 10305-3:2016;	Stahlrohr nichtrostender Stahl, 1.4401, 1.4404 oder 1.4571, EN 10217-7:2014, EN 10216-5:2013
4	Pressring	Polyethylen	Polyethylen
5	Spreizhülse	Stahl, EN 10139:2016	Nichtrostender Stahl, 1.4401, 1.4404 oder 1.4571, EN 10088:2014
6	Spreizkonus	Stahl, EN 10083-2:2006	Nichtrostender Stahl, 1.4401, 1.4404 oder 1.4571, EN 10088:2014
7	Sechskantmutter	Stahl, Festigkeitsklasse 8, EN ISO 898-2:2012	Nichtrostender Stahl, Festigkeitsklasse 70, EN ISO 3506-2:2009,
8	Sechskantschraube	Stahl, Festigkeitsklasse 8.8, EN ISO 898-1:2013;	Nichtrostender Stahl, Festigkeitsklasse 70, EN ISO 3506-1:2009
9	Senkschraube	Stahl, Festigkeitsklasse 8.8, EN ISO 898-1:2013;	Nichtrostender Stahl, Festigkeitsklasse 70, EN ISO 3506-1:2009
10	Senkscheibe Stahl, EN 10083-2:2006		Nichtrostender Stahl, 1.4401, 1.4404 oder 1.4571, EN 10088:2014, verzinkt

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4	
Produktbeschreibung Prägung und Werkstoffe	Anhang A2

Spezifizierung des Verwendungszwecks

Hochleistungsanker W-HAZ, Stahl verzinkt	10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Statische oder quasi-statische Einwirkung			A CONTRACTOR ASSESSMENT		/			
Seismische Einwirkung (W-HAZ-B und W-HAZ-S)	•	C1 + C2						
Seismische Einwirkung (W-HAZ-SK)	-	C1 + C2 -						
Brandbeanspruchung	R 30 R 120							
Hochleistungsanker W-HAZ,		12/849	15/8/10	10/1/12	24/M16	7.00		

Hochleistungsanker W-HAZ, nichtrostender Stahl A4	12/M8	15/M10	18/M12	24/M16		
Statische oder quasi-statische Einwirkung		,	/			
Seismische Einwirkung (W-HAZ-B und W-HAZ-S)		C1 -	+ C2			
Seismische Einwirkung (W-HAZ-SK)	C1 + C2 -					
Brandbeanspruchung		R30	. R120			

Verankerungsgrund:

- Gerissener und ungerissener Beton
- Verdichteter, bewehrter oder unbewehrter Normalbeton (ohne Fasern) nach EN 206:2013
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206:2013

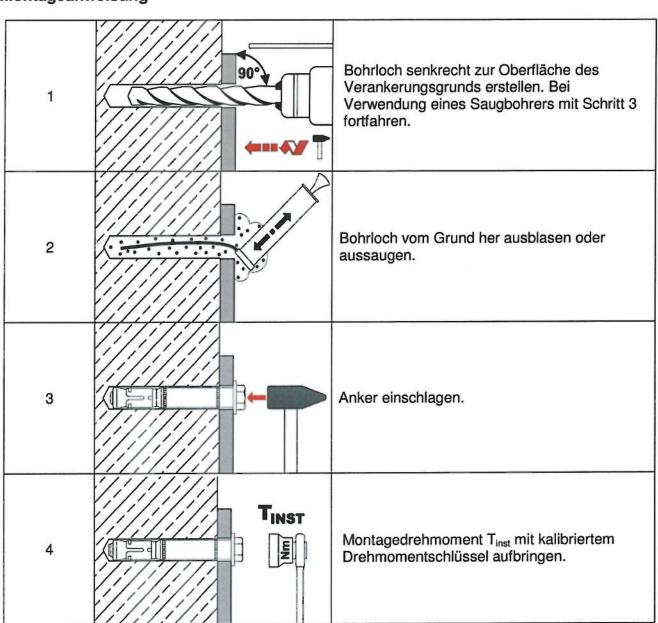
Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter Bedingungen trockener Innenräume (verzinkter Stahl oder nichtrostender Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl).

Anmerkung: Besonders aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

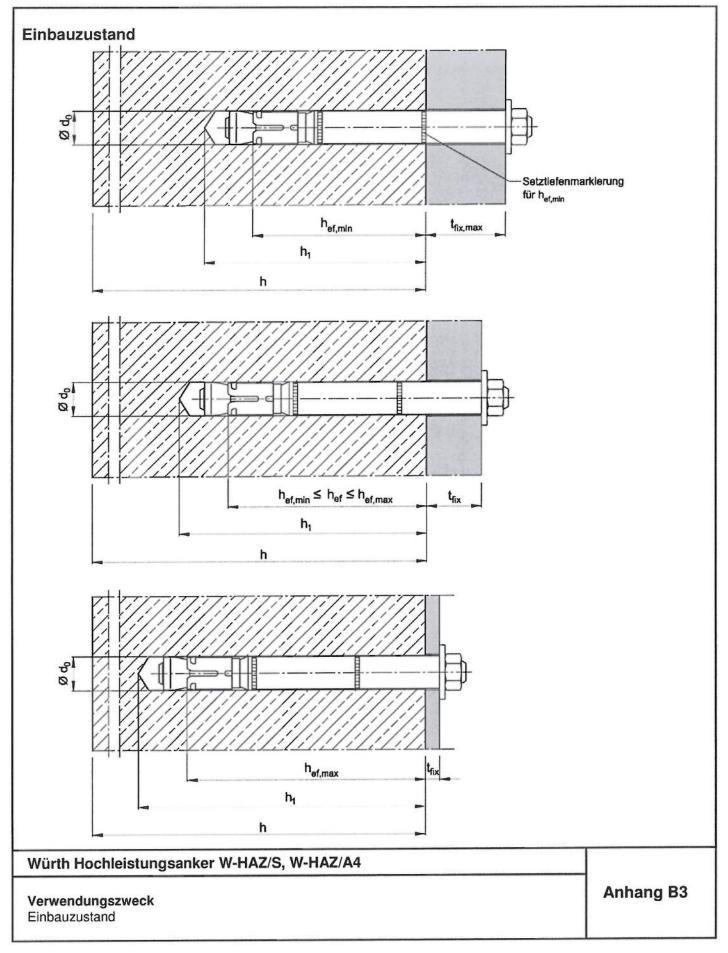
Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung, bei seismischer Beanspruchung oder bei Brandbeanspruchung erfolgt nach FprEN 1992-4:2016 in Verbindung mit TR 055.


Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.
- Bei Fehlbohrung: Anordnung eines neuen Bohrlochs im Abstand > 2 x Tiefe der Fehlbohrung oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Queroder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Einhaltung der effektiven Verankerungstiefe. Bei Befestigungen mit Verankerungstiefen $h_{ef} > h_{ef,min}$ reduziert sich die nutzbare Klemmstärke um $h_{ef} h_{ef,min}$.
- Verwendung wie vom Hersteller geliefert, ohne Austausch einzelner Teile.
- Bohrlocherstellung nur durch Hammerbohren (Verwendung von Saugbohrern ist erlaubt)

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4 Verwendungszweck Spezifizierung des Verwendungszwecks Anhang B1


Montageanweisung

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4

Verwendungszweck Montageanweisung Anhang B2

Tabelle B1: Montage- und Dübelkennwerte, Stahl verzinkt

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Gewinde		[-]	M6	M8	M10	M12	M16	M16	M20	M24
Minimale wirksame Verankerungstiefe	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
Maximale wirksame Verankerungstiefe	$h_{\text{ef},\text{max}}$	[mm]	76	100	110	130	114	150	185	210
Bohrernenndurchmesser	d ₀ =	[mm]	10	12	15	18	24	24	28	32
Bohrerschneidendurch- messer	d _{cut} ≤	[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55	32,7
Bohrlochtiefe	h₁ ≥	[mm]	h _{ef} + 15	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30	h _{ef} + 30	h _{ef} + 35	h _{ef} + 30
Durchgangsloch im anzuschließenden Baute	l d₁≤	[mm]	12	14	17	20	26	26	31	35
Dicke der Senkscheibe W-HAZ-SK	t _{sk}	[mm]	4	5	6	7		-	•	-
Mindestanbauteildicke W-HAZ-SK	t _{fix min} 2)	[mm]	8	10	14	18	•	-	. .	·*·
Montage-	(W-HAZ-B, W-HAZ-S)	[Nm]	15	30	50	80	160	160	280	280
drehmoment T _{inst}	(W-HAZ-SK)	[Nm]	10	25	55	70	-	-	-	-
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 50	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100	h _{ef} + 115	h _{ef} + 125	h _{ef} + 150
Minimaler Achsabstand 1	3) S _{min}	[mm]	50	50	60	70	100	100	125	150
gerissener Beton	für c ≥	[mm]	50	80	120	140	180	180	300	300
Minimaler Randabstand 1) 3) C _{min}	[mm]	50	55	60	70	100	100	180	150
gerissener Beton	für s ≥	[mm]	50	100	120	160	220	220	540	300
Minimaler Achsabstand 1	3) S _{min}	[mm]	50	60	60	70	100	100	125	150
ungerissener Beton	für c≥	[mm]	80	100	120	140	180	180	300	300
Minimaler Randabstand 1) 3) C _{min}	[mm]	50	60	60	70	100	100	180	150
ungerissener Beton	fürs≥	[mm]	100	120	120	160	220	220	540	300

1) Zwischenwerte dürfen interpoliert werden

³⁾ Bei mehrseitiger Brandbeanspruchung gilt c ≥ 300 mm bzw. c_{min} ≥ 300 mm.

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4

Verwendungszweck

Montage- und Dübelkennwerte, Stahl verzinkt

Anhang B4

Die Anbauteildicke darf, abhängig von der tatsächlich vorhandenen Querlast, bis auf die Dicke der Senkscheibe t_{sk} (siehe Anhang A2) reduziert werden. Es ist nachzuweisen, dass die Querlast vollständig in die Distanzhülse eingeleitet werden kann (Lochleibung).

Tabelle B2: Montage- und Dübelkennwerte, nichtrostender Stahl A4

Dübelgröße				12/M8	15/M10	18/M12	24/M16
Gewinde			[-]	M8	M10	M12	M16
Minimale wirksame Verankerungstiefe		h _{ef,min}	[mm]	60	71	80	100
Maximale wirksame Verankerungstiefe		h _{ef,max}	[mm]	100	110	130	150
Bohrernenndurchmesser		d ₀ =	[mm]	12	15	18	24
Bohrerschneidendurchmes	ser	$d_{cut} \leq$	[mm]	12,5	15,5	18,5	24,55
Bohrlochtiefe		h₁ ≥	[mm]	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30
Durchgangsloch im anzuschließenden Bauteil		d _f ≤	[mm]	14	17	20	26
Dicke der Senkscheibe W-	HAZ-SK	t _{sk}	[mm]	5	6	7	-
Mindestanbauteildicke W-F	HAZ-SK	t _{fix min} 2)	[mm]	10	14	18	-
	T _{inst} (W-HA	AZ-B)	[Nm]	35	55	90	170
Montagedrehmoment	T _{inst} (W-HA	AZ-S)	[Nm]	30	50	80	170
•	T _{inst} (W-HA	AZ-SK)	[Nm]	17,5	42,5	50	-
Mindestbauteildicke		h _{min}	[mm]	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100
Minimaler Achsabstand 1) 3)		S _{min}	[mm]	50	60	70	80
gerissener Beton		für c≥	[mm]	80	120	140	180
Minimaler Randabstand 1) 3)		C _{min}	[mm]	50	60	70	80
gerissener Beton		fürs≥	[mm]	80	120	160	200
Minimaler Achsabstand 1)3)		S _{min}	[mm]	50	60	70	80
ungerissener Beton		für c ≥	[mm]	80	120	140	180
Minimaler Randabstand 1) 3)		C _{min}	[mm]	50	85	70	180
ungerissener Beton		fürs≥	[mm]	80	185	160	80

¹⁾ Zwischenwerte dürfen interpoliert werden

³⁾ Bei mehrseitiger Brandbeanspruchung gilt c \geq 300 mm bzw. $c_{min} \geq$ 300 mm.

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4

Verwendungszweck

Montage- und Dübelkennwerte, nichtrostender Stahl A4

Anhang B5

Die Anbauteildicke darf, abhängig von der tatsächlich vorhandenen Querlast, bis auf die Dicke der Senkscheibe t_{sk} (siehe Anhang A2) reduziert werden. Es ist nachzuweisen, dass die Querlast vollständig in die Distanzhülse eingeleitet werden kann (Lochleibung).

Tabelle C1: Charakteristische Werte bei Zugbeanspruchung, gerissener Beton, statische oder quasi-statische Belastung, Stahl verzinkt

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Montagebeiwert	γinst	[-]				1	,0			
Stahlversagen										
Charakteristische Tragfähigkeit	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282
Teilsicherheitsbeiwert	γмѕ	[-]	1,5							
Herausziehen										
Charakteristische Tragfähigkeit in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]	5	12	16	25	36	44	50	65
Erhöhungsfaktor für N _{Rk,p}	Ψс	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,5			
Betonausbruch										
Minimale wirksame Verankerungstiefe	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
Maximale wirksame Verankerungstiefe	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Faktor für gerissenen Beton	$K_1 = K_{cr,N}$	[-]	7,7							

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4

Leistung

Charakteristische Werte bei **Zugbeanspruchung**, **gerissener Beton**, statische oder quasistatische Belastung, **Stahl verzinkt**

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, gerissener Beton, statische oder quasi-statische Belastung, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16			
Montagebeiwert	[-]	[-] 1,0							
Stahlversagen									
W-HAZ-B		V							
Charakteristische Tragfähigkeit	N _{Rk,s}	[kN]	26	41	60	110			
Teilsicherheitsbeiwert	γMs	[-]		1	,5				
W-HAZ-S und W-HAZ-SK									
Charakteristische Tragfähigkeit	N _{Rk,s}	[kN]	26	41	60	110			
Teilsicherheitsbeiwert	γMs	[-]	1,87						
Herausziehen									
Charakteristische Tragfähigkeit in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]	9	16	25	36			
Erhöhungsfaktor für N _{Rk,p}	Ψс	[-]		$\left(\frac{f_{ck}}{20}\right)$	-)0,5				
Betonausbruch									
Minimale wirksame Verankerungstiefe	h _{ef,min}	[mm]	60	71	80	100			
Maximale wirksame Verankerungstiefe	h _{ef,max}	[mm]	100	110	130	150			
Faktor für gerissenen Beton	$k_1 = k_{cr,N}$	[-]		7,	7				

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4

Leistung

Charakteristische Werte bei **Zugbeanspruchung, gerissener Beton,** statische oder quasistatische Belastung, **nichtrostender Stahl A4**

Tabelle C3: Charakteristische Werte bei Zugbeanspruchung, ungerissener Beton, statische oder quasi-statische Belastung, Stahl verzinkt

Dübelgröße	Time all Blooms		10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24	
Montagebeiwert	Yinst	[-]	1,0								
Stahlversagen											
Charakteristische Tragfähigkeit	$N_{Hk,s}$	[kN]	16	29	46	67	126	126	196	282	
Teilsicherheitsbeiwert	γMs	[-]				1	,5				
Herausziehen											
Charakteristische Tragfähigkeit in ungerissenem Beton C20/25	$N_{Rk,p}$	[kN]	17	20	30	36	50	1)	70	1)	
Erhöhungsfaktor für N _{Rk,p}	Ψс	[-]			$\left(\!\frac{f_{ck}}{20}\!\right)^{0,5}$				$\left(\frac{f_{ck}}{20}\right)^{0,5}$	8#8	
Spalten (Es darf der höh	ere Widersta	nd aus	Fall 1 und	Fall 2 and	gesetzt wei	rden)					
Fall 1											
Charakteristische Tragfähigkeit in ungerissenem Beton C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	30	40	70	50	70	
Randabstand	C _{cr,sp}	[mm]				1,5	h _{ef}				
Erhöhungsfaktor für N ⁰ _{Rk,sp}	Ψс	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,5				
Fall 2											
Charakteristische Tragfähigkeit in ungerissenem Beton	N ⁰ _{Rk,sp}	[kN]				min (N _{Rk}	p; N ⁰ _{Rk,c})				
Randabstand	C _{cr,sp}	[mm]			2,5 h _{ef}			1,5 h _{ef}	2,5 h _{ef}	2 h _{ef}	
Betonausbruch											
Minimale wirksame Verankerungstiefe	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150	
Maximale wirksame Verankerungstiefe	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210	
Randabstand	C _{cr,N}	[mm]				1,5	h _{ef}				
Faktor für ungerissenen Beton	$k_1 = k_{\text{ucr},N}$	[-]				11	,0				

 $^{^{1)}}N_{Rk,p} = N_{Rk,c}^{0}$ berechnet mit $h_{ef,min}$

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4	
Leistung Charakteristische Werte bei Zugbeanspruchung, ungerissener Beton, statische oder quasi-statische Belastung, Stahl verzinkt	Anhang C3

Tabelle C4: Charakteristische Werte bei Zugbeanspruchung, ungerissener Beton, statische oder quasi-statische Belastung, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16	
Montagebeiwert	γinst	[-]		1	,0		
Stahlversagen	 						
W-HAZ-B						5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Charakteristischer Widerstand	$N_{\text{Rk,s}}$	[kN]	26	41	60	110	
Teilsicherheitsbeiwert	γMs	[-]		1	,5		
W-HAZ-S und W-HAZ-SK							
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	26	41	60	110	
Teilsicherheitsbeiwert	γ̃Ms	[-]	1,87				
Herausziehen							
Charakteristischer Widerstand in ungerissenem Beton C20/25	N _{Rk,p}	[kN]	16	25	35	50	
Erhöhungsfaktor für N _{Rk,p}	Ψο	[-]		$\left(\frac{f_{ck}}{20}\right)$	0,5		
Spalten							
Randabstand	C _{cr,sp}	[mm]	180	235	265	300	
Betonausbruch							
Minimale wirksame Verankerungstiefe	h _{ef,min}	[mm]	60	71	80	100	
Maximale wirksame Verankerungstiefe	h _{ef,max}	[mm]	100	110	130	150	
Randabstand	C _{cr,N}	[mm]		1,5	h _{ef}		
Faktor für ungerissenen Beton ,	$k_1 = k_{ucr,N}$	[-]		11	1,0		

Leistung

Charakteristische Werte bei **Zugbeanspruchung, ungerissener Beton,** statische oder quasi-statische Belastung, **nichtrostender Stahl A4**

Tabelle C5: Charakteristische Werte bei **Querbeanspruchung**, statische oder quasi-statische Belastung, **Stahl verzinkt**

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Stahlversagen ohne l	lebelarr	n								
W-HAZ-B										
Charakteristischer Widerstand	V ⁰ _{Rk,s}	[kN]	16	25	36	63	91	91	122	200
Duktilitätsfaktor	k ₇	[-]	1,0							
W-HAZ-S und W-HAZ-SK	NUMBER OF STREET									
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	18	30	48	73	126	126	150	200
Duktilitätsfaktor	k ₇	[-]	1,0							
Teilsicherheitsbeiwert	γ _{Ms}	[-]	1,25							
Stahlversagen mit He	belarm		2412							
Charakteristischer Biegewiderstand	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	266	266	519	898
Teilsicherheitsbeiwert	γ_{Ms}	[-]				1,2	25			
Betonausbruch auf de	er lastal	gewan	dten Seite	е						
Pry-out Faktor	k ₈	[-]	1,8 1)				2,0			
Betonkantenbruch										
Wirksame Dübellänge bei Querlast	l _f	[mm]	h _{ef}							
Wirksamer Außendurchmesser	d_{nom}	[mm]	10	12	15	18	24	24	28	32

 $^{^{1)}}$ $k_8 = 2,0$ für $h_{ef} \ge 60$ mm

Leistung

Charakteristische Werte bei **Querbeanspruchung**, statische oder quasi-statische Belastung, **Stahl verzinkt**

Tabelle C6: Charakteristische Werte bei Querbeanspruchung, statische oder quasi-statische Belastung, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16		
Stahlversagen ohne Hebelarm								
Charakteristischer Widerstand	V ⁰ _{Rk,s}	[kN]	24	37	62	92		
W-HAZ-B								
Duktilitätsfaktor	k ₇	[-]	1,0					
Teilsicherheitsbeiwert	γ _{Ms}	[-]		1,	25			
W-HAZ-S								
Duktilitätsfaktor	k ₇	[-]	1,0					
Teilsicherheitsbeiwert	γ _{Ms}	[-]	1,36					
W-HAZ-SK						2712 - 50		
Duktilitätsfaktor	k ₇	[-]		-				
Teilsicherheitsbeiwert	γ̃Ms	[-]						
Stahlversagen mit Hebelarm								
Charakteristischer Biegewiderstand	$M^0_{Rk,s}$	[Nm]	26	52	92	232		
W-HAZ-B								
Teilsicherheitsbeiwert	γ _{Ms}	[-]		1,	25			
W-HAZ-S und W-HAZ-SK								
Teilsicherheitsbeiwert	γ _{Ms}	[-]		1,	56			
Betonausbruch auf der lastabgewandte	n Seite							
Pry-out Faktor	k ₈	[-]	2,0					
Betonkantenbruch								
Wirksame Dübellänge bei Querlast	l _f	[mm]		h,	ef			
Wirksamer Außendurchmesser	d _{nom}	[mm]	12	15	18	24		

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4

Leistung

Charakteristische Werte bei Querbeanspruchung, statische oder quasi-statische Belastung, nichtrostender Stahl A4

Tabelle C7: Charakteristische Werte bei seismischer Beanspruchung, Kategorie C1 und C2, Stahl verzinkt

Dübelgröße			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	32/M24
Zugbeanspruchung									
Montagebeiwert	γinst	[-]				1,0			
Stahlversagen									water 22 miles
Charakteristischer Widerstand, Kategorie C1	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	126	196	280
Charakteristischer Widerstand, Kategorie C2	N _{Rk,s,eq,C2}	[kN]	29	46	67	126	126	196	280
Teilsicherheitsbeiwert	γмѕ	[-]				1,5			
Herausziehen			****						
Charakteristischer Widerstand, Kategorie C1	N _{Rk,p,eq,C1}	[kN]	12	16	25	36	44,4	50,3	63,3
Charakteristischer Widerstand, Kategorie C2	N _{Rk,p,eq,C2}	[kN]	5,4	16,4	22,6	29,0	41,2	43,6	63,3
Querbeanspruchung									
Stahlversagen ohne Hebel	larm								
W-HAZ-B									
Charakteristischer Widerstand, Kategorie C1	V _{Rk,s,eq,C1}	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Charakteristischer Widerstand, Kategorie C2	V _{Rk,s,eq,C2}	[kN]	12,7	20,5	31,5	50,1	50,1	67,1	108,1
W-HAZ-S							,		
Charakteristischer Widerstand, Kategorie C1	V _{Rk,s,eq,C1}	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Charakteristischer Widerstand, Kategorie C2	V _{Rk,s,eq,C2}	[kN]	12,7	20,5	31,5	69,3	69,3	67,1	108,1
W-HAZ-SK					ana and an				
Charakteristischer Widerstand, Kategorie C1	V _{Rk,s,eq,C1}	[kN]	25,2	36,5	50,4		•	-	-
Charakteristischer Widerstand, Kategorie C2	V _{Rk,s,eq,C2}	[kN]	19,2	29,3	39,4	-	-	-	-
Faktor für Ringspalt	α_{gap}	[-]				0,5			
Teilsicherheitsbeiwert	γ̃Ms	[-]				1,25			

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4	
Leistung Charakteristische Werte bei seismischer Beanspruchung, Stahl verzinkt	Anhang C7

Tabelle C8: Charakteristische Werte bei seismischer Beanspruchung, Kategorie C1 und C2, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16
Zugbeanspruchung						
Montagebeiwert	Yinst	[-]		1,	0	
Stahlversagen						
Charakteristischer Widerstand, Kategorie C1	N _{Rk,s,eq,C1}	[kN]	26	41	60	110
Charakteristischer Widerstand, Kategorie C2	N _{Rk,s,eq,C2}	[kN]	26	41	60	110
Teilsicherheitsbeiwert W-HAZ-B	[-]		1,	5		
Teilsicherheitsbeiwert W-HAZ-S und W-HAZ-SK	[-]		1,	87		
Herausziehen						
Charakteristischer Widerstand, Kategorie C1	N _{Rk,p,eq,C1}	[kN]	9	16	26	36
Charakteristischer Widerstand, Kategorie C2	N _{Rk,p,eq,C2}	[kN]	4,8	16,5	24,8	44,5
Querbeanspruchung						
Stahlversagen ohne Hebelarm						
W-HAZ-B						
Charakteristischer Widerstand, Kategorie C1	V _{Rk,s,eq,C1}	[kN]	9,6	13,3	25,4	75,4
Charakteristischer Widerstand, Kategorie C2	V _{Rk,s,eq,C2}	[kN]	9,7	14,0	18,0	32,2
Teilsicherheitsbeiwert	γ _{Ms}	[-]	1,25			
W-HAZ-S						
Charakteristischer Widerstand, Kategorie C1	V _{Rk,s,eq,C1}	[kN]	9,6	13,3	25,4	75,4
Charakteristischer Widerstand, Kategorie C2	V _{Rk,s,eq,C2}	[kN]	9,7	14,0	18,0	32,2
Teilsicherheitsbeiwert	γмs	[-]		1,3	36	
W-HAZ-SK						
Charakteristischer Widerstand, Kategorie C1	V _{Rk,s,eq,C1}	[kN]	11,5	23,3	31,6	-
Charakteristischer Widerstand, Kategorie C2	V _{Rk,s,eq,C2}	[kN]	10,8	17,4	15,4	-
Teilsicherheitsbeiwert	γмs	[-]	1,36 -			-
Faktor für Ringspalt	α_{gap}	[-]		0,	5	

Leistung

Charakteristische Werte bei seismischer Beanspruchung, nichtrostender Stahl A4

Tabelle C9: Charakteristische Werte unter **Brandeinwirkung** in gerissenem und ungerissenem Beton C20/25 bis C50/60

Dübelgröße				10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M2 ⁴
Zugbeanspruchun	g										
Stahlversagen											
Stahl, verzinkt											
32-150-111-2	R30			1,0	1,9	4,3	6,3	11	,6	18,3	26,3
Charakteristischer	R60	N	ILAN1	0,8	1,5	3,2	4,6	8,	,6	13,5	19,5
Widerstand	R90	$N_{\text{Rk},s,\text{fi}}$	[kN]	0,6	1,0	2,1	3,0	5,	0,	7,7	12,6
	R120			0,4	0,8	1,5	2,0	3,	1	4,9	9,2
Nichtrostender Sta	ahl A4		2								
R30				-	6,1	10,2	15,7	29,2	•	-	-
Charakteristischer	R60	NI.	ri-NI3		4,4	7,3	11,1	20,6	-	-	-
Widerstand R90	$N_{Rk,s,fi}$	[kN]	-	2,6	4,3	6,4	12,0	-	-	-	
	R120			-	1,8	2,8	4,1	7,7	-	-	-
Querbeanspruchu	ng										
Stahlversagen ohr	ne Heb	elarm									
Stahl, verzinkt											
	R30			1,0	1,9	4,3	6,3	11	,6	18,3	26,3
Charakteristischer	R60			0,8	1,5	3,2	4,6	8,	6	13,5	19,5
Widerstand	R90	$V_{Rk,s,fi}$	[kN]	0,6	1,0	2,1	3,0	5,	5,0		12,6
	R120			0,4	0,8	1,5	2,0	3,	1	4,9	9,2
Nichtrostender Sta	ahl A4										
	R30			-	14,3	22,7	32,8	61,0	-	-	-
Charakteristischer	R60	.,	ri.Aii		11,1	17,6	25,5	47,5	-	•	
Widerstand	R90	$V_{Rk,s,fi}$	[kN]	120	7,9	12,6	18,3	34,0	-	-	•
	R120			(10)	6,3	10,0	14,6	27,2	-	-	
Stahlversagen mit	Hebela	arm									
Stahl, verzinkt											
	R30			0,8	2,0	5,6	9,7	24	,8	42,4	83,6
Charakteristischer	R60	0		0,6	1,5	4,1	7,2	18	,3	29,8	61,9
Biegewiderstand	R90	M ⁰ Rk,s,fi	[Nm]	0,4	1,0	2,7	4,7	11	,9	17,1	40,1
	R120			0,3	0,8	1,9	3,1	6,	6,6		29,2
Nichtrostender Sta	ahl A4										
	R30			-	6,2	13,2	24,4	61,8	-	-	-
Charakteristischer	R60	s a0	ra 1 - 1		4,5	9,4	17,2	43,6	-	-	-
Biegewiderstand	R90	M ⁰ Rk,s,fi	[Nm]	-	2,7	5,6	10,0	25,3	-	_	-
	R120			•	1,8	3,6	6,4	16,2	-	-	-

Würth Hochleistungsanker	W-HAZ/S,	W-HAZ/A4
--------------------------	----------	----------

Leistung

Charakteristische Werte unter Brandeinwirkung

7,0

10,5

3,3

3,5

5,3

3,0

3,6

5,4

3,1

7,0

10,5

3,3

4,3

6,5

1,6

10,5

15,8

6,1

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Zugbeanspruchung										
Zuglast im gerissenen Beton	N	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24	26,2
Verschiebung	δ_{N0}	[mm]	0,5	0,5	0,5	0,7	0,8	0,7	0,9	1,4
verscrilebung	$\delta_{N\infty}$	[mm]	2,0	2,0	1,3	1,3	1,3	1,3	1,4	1,9
Zuglast im ungerissenen Beton	N	[kN]	8,5	9,5	14,3	17,2	24	29,6	34	43
Verschiebung	δ_{N0}	[mm]	0,8	1,0	1,1			1,3	0,3	0,7
verschiebung	δ _{N∞}	[mm]	3	,4		1,7		2,3	1,4	0,7
Seismische Beanspruch	nung C2									
Verschiebung für DLS	δ _{N.eq (DLS)}	[mm]	-	3,3	3,0	5,0	3,0	3,0	4,0	5,3
Verschiebung für ULS	δ _{N,eq (ULS)}	[mm]	•	12,2	11,3	16,0	9,2	9,2	13,8	12,4
Querbeanspruchung										
W-HAZ-B										
Querlast in gerissenem und ungerissenem Beton	V	[kN]	9,1	14	20,7	35,1	52,1	52,1	77	86,6
Verschiebung -	δ_{V0}	[mm]	2,5	2,1	2,7	3,0	5,1	5,1	4,3	10,5
verscrilebung	$\delta_{V\infty}$	[mm]	3,8	3,1	4,1	4,5	7,6	7,6	6,5	15,8
Seismische Beanspruch	nung C2									
Verschiebung für DLS	$\delta_{V,eq\;(DLS)}$	[mm]	-	2,3	3,1	3,0	2,6	2,6	1,6	6,1
Verschiebung für ULS	δ _{V,eq (ULS)}	[mm]	-	4,8	6,4	6,1	6,6	6,6	4,8	9,5
W-HAZ-S										
Querlast in gerissenem und ungerissenem Beton	V	[kN]	10,1	17,1	27,5	41,5	72	72	77	86,6
V				Action Control of the						40.5

Verschiebung für ULS	δ _{V,eq (ULS)}	[mm]	-	4,8	6,4	6,1	8,2	8,2	4,8	9,5
W-HAZ-SK										
Querlast in gerissenem ungerissenem Beton	und V	[kN]	10,1	17,1	27,5	41,5	8 - 8	-	-	-
Managhiahasan	δνο	[mm]	2,9	2,5	3,6	3,5	-	-	-	-
Verschiebung -	δ _{V∞}	[mm]	4,4	3,8	5,4	5,3	-	-	-	-
Seismische Beanspruch	nung C2	(1								20.000
Verschiebung für DLS	δ _{V,eq (DLS)}	[mm]	-	3,1	3,9	3,9	-	-	-	-
Verschiebung für ULS	δ _{V,eq (ULS)}	[mm]	-	10,2	11,8	13,0	_	-	14-1	-

2,5

3,8

2,3

Würth Hochleistungsanker W-HAZ/S, W-HAZ/A4

Leistung

Verschiebung

Seismische Beanspruchung C2

Verschiebung für DLS

Verschiebung unter Zug- und Querbeanspruchung, Stahl verzinkt

 δ_{V0}

 $\delta_{V\infty}$

δ_{V,eq (DLS)}

[mm]

[mm]

[mm]

2,9

4,4

Tabelle C11: Verschiebung unter Zug- und Querbeanspruchung, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16
Zugbeanspruchung				•		
Zuglast im gerissenen Beton	N	[kN]	4,3	7,6	12,1	17,0
V	δ_{NO}	[mm]	0,5	0,5	1,3	0,5
Verschiebung	δ _{N∞}	[mm]	1,2	1,6	1,8	1,6
Zuglast im ungerissenen Beton	N	[kN]	7,6	11,9	16,7	24,1
Varaabiahuna	δ_{NO}	[mm]	0,2	0,3	1,2	1,5
Verschiebung	 δ _{N∞}	[mm]	1,1	1,1	1,1	1,1
Seismische Beanspruchung C2						
Verschiebung für DLS	δ _{N,eq (DLS)}	[mm]	4,7	4,5	4,3	4,9
Verschiebung für ULS	δ _{N,eq (ULS)}	[mm]	13,3	12,7	9,7	10,1
Querbeanspruchung						
Querlast in gerissenem und ungerissenem Beton	V	[kN]	13,9	21,1	34,7	50,8
Verschiebung	δ_{V0}	[mm]	3,4	4,9	4,8	6,7
verscriebung	δν∞	[mm]	5,1	7,4	7,1	10,1
Seismische Beanspruchung C2						
W-HAZ-B, W-HAZ-S						
Verschiebung für DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	2,8	3,1	2,6	3,3
Verschiebung für ULS	$\delta_{V,eq\;(ULS)}$	[mm]	5,6	5,8	5,0	6,9
W-HAZ-SK					- secondonimo - se	
Verschiebung für DLS	$\delta_{V,eq(DLS)}$	[mm]	2,5	2,8	2,9	-
Verschiebung für ULS	δ _{V,eq (ULS)}	[mm]	5,8	5,9	6,9	-

Leistung

Verschiebung unter Zug- und Querbeanspruchung, nichtrostender Stahl A4