

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0127 of 13 November 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Bonded fastener for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 3

35 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 4/2020

ETA-17/0127 issued on 13 March 2019

European Technical Assessment ETA-17/0127

Page 2 of 35 | 13 November 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0127

Page 3 of 35 | 13 November 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Würth Injection system WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar WIT-UH 300 / WIT-VH 300 / WIT-VH 300 and a steel element according to Annex A3 and A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1 to C 4, C 6 to C 7, C 9 to C 10
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 5, C 8, C 11
Displacements under short-term and long-term loading	See Annex C 12 to C 14
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 15 to C 18

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-17/0127

Page 4 of 35 | 13 November 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

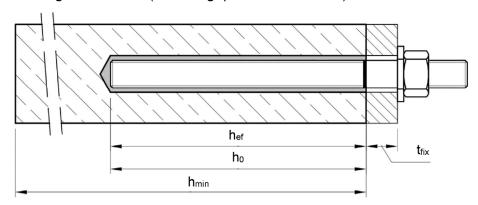
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

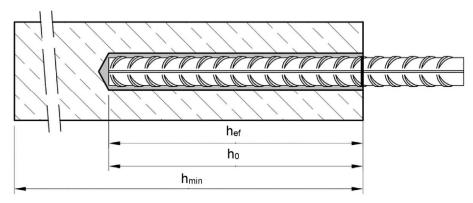
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

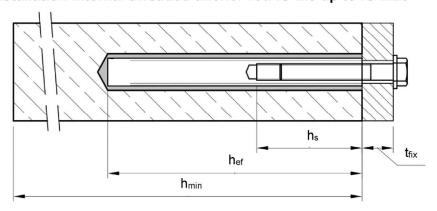
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 November 2020 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

prepositioned installation or


push through installation (annular gap filled with mortar)

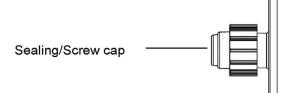
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

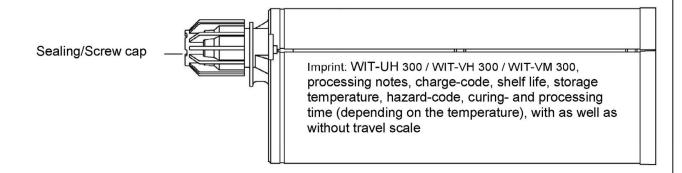
 t_{fix} = thickness of fixture

 h_{ef} = effective anchorage depth

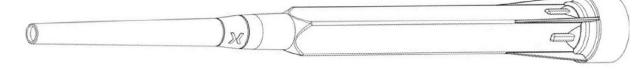
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

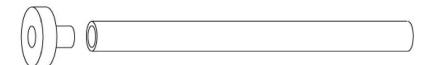
Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Product description Installed condition	Annex A 1


Cartridge: WIT-UH 300 / WIT-VH 300 / WIT-VM 300

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



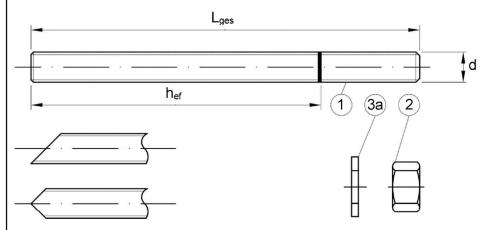
Imprint: WIT-UH 300 / WIT-VH 300 / WIT-VM 300, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale


235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

Static Mixer WIT-UH / WIT-MX

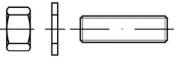
Piston plug and mixer extension

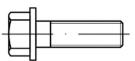
Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

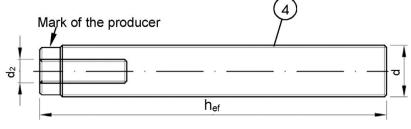

Product description

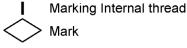
Injection system

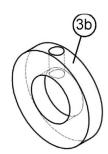
Annex A 2




Commercial standard threaded rod with:


- Materials, dimensions and mechanical properties acc.
 Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth


Threaded rod or screw


Marking: e.g. <



M8 Thread size (Internal thread)A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Product description

Threaded rod, internal threaded rod and filling washer

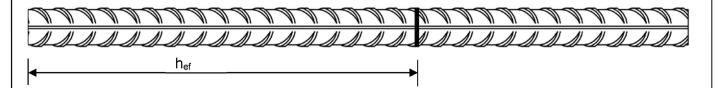
Annex A 3

8.06.01-700/20

	ble A1: Mate	rials				
	Designation	Material				
z h	nc plated ≥ ot-dip galvanised ≥	acc. to EN 10087:1998 5 μm acc. to EN ISO 40 μm acc. to EN ISO 45 μm acc. to EN ISO	4042: 1461:	1999 or 2009 and EN ISO 10684:2	004+AC:2009 or	
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
			4.6	f _{uk} = 400 N/mm²	f _{vk} = 240 N/mm ²	A ₅ > 8%
1	Threaded rod		4.8	f _{uk} = 400 N/mm²	f _{yk} = 320 N/mm²	A ₅ > 8%
•	Timedaca roa	acc. to		f _{uk} = 500 N/mm²	f _{vk} = 300 N/mm ²	A ₅ > 8%
		EN ISO 898-1:2013		f _{uk} = 500 N/mm²	f _{vk} = 400 N/mm ²	A ₅ > 8%
				f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ ≥ 12% ³⁾
			4	for threaded rod class 4.6	or 4.8	
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for threaded rod class 5.6	or 5.8	
			8	for threaded rod class 8.8		
3а	Washer	(e.g.: EN ISO 887:200	6, EN	alvanised or sherardized ISO 7089:2000, EN ISO 7	093:2000 or EN ISO 7	094:2000)
3b	Filling washer	Steel, zinc plated, hot-	dip ga	alvanised or sherardized		T=
4	Internal threaded	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
7	anchor rod	acc. to		f _{uk} = 500 N/mm²	f _{yk} = 400 N/mm²	A ₅ > 8%
		EN ISO 898-1:2013	8.8	f _{uk} = 800 N/mm²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ²	A ₅ > 8% A ₅ > 8%
Stai Stai	nless steel A2 (Mate nless steel A4 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1.	8.8 4311 4571	un u	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014)	
Stai Stai	nless steel A2 (Mate nless steel A4 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1.	8.8 4311 4571	f _{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014)	A ₅ > 8%
Stai Stai Higl	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistar	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1. ice steel (Material 1.452 Property class	8.8 4311 4571 29 or	f _{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) 1: 2014) Characteristic steel	A ₅ > 8%
Stai Stai	nless steel A2 (Mate nless steel A4 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1. ace steel (Material 1.452 Property class acc. to	8.8 4311 4571 29 or	f _{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) 1: 2014) Characteristic steel yield strength	A ₅ > 8% Elongation at fracture
Stai Stai Hig	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistar	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1. ice steel (Material 1.452 Property class	8.8 4311 4571 29 or 50 70	f _{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) 1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
Stai Stai Higi	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistar	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1. erial 1.452 Property class acc. to EN ISO 3506-1:2009	8.8 4311 4571 29 or 50 70	f _{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) 1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 12\%$
Stai Stai Higl	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistar	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1. ere steel (Material 1.452 Property class acc. to EN ISO 3506-1:2009 acc. to	8.8 4311 4571 29 or - 50 70 80 50 70	f_{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod class 50 for threaded rod class 70	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) 1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 12\%$
Stai Stai Higl	nless steel A2 (Materials steel A4 (Materials	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1. nce steel (Material 1.452 Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009	8.8 4311 4571 29 or 50 70 80 50 70 80	f_{uk} = 800 N/mm² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f_{uk} = 500 N/mm² f_{uk} = 700 N/mm² f_{uk} = 800 N/mm² for threaded rod class 50 for threaded rod class 80	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$
Stai Stai Higl	nless steel A2 (Materials steel A4 (Materials	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1. erial 1.4401 / 1.4404 / 1. erial 1.452 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529	8.8 4311 4571 29 or 50 70 80 50 70 80 4307 4404 or 1.4	f_{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod class 50 for threaded rod class 70	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 12\%$ A_5
Stai Stai High 1	nless steel A2 (Materials steel A4 (Materials	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1. erial 1.4401 / 1.4404 / 1. erial 1.452 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529	8.8 4311 4571 29 or 7 50 70 80 50 70 80 1.4307 1.4404 or 1.4 6, EN	f_{uk} = 800 N/mm ² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 / 1.4311 / 1.4567 or 1.454 / 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 7	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$ $A_5 \ge 12\%^{3}$ $A_5 \ge 12\%^{3}$
Stai Stai High	nless steel A2 (Materiess steel A4 (Materiess steel A4 (Materies) Threaded rod 1)4) Hexagon nut 1)4) Washer	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1. ere steel (Material 1.452 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:200)	8.8 4311 4571 29 or 2 50 70 80 70 80 1.4307 1.4404 or 1.4 6, EN	f_{uk} = 800 N/mm² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f_{uk} = 500 N/mm² / f_{uk} = 700 N/mm² / f_{uk} = 800 N/mm² for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 / 1.4311 / 1.4567 or 1.457 / 1.4571 / 1.4362 or 1.457565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 7 rosion resistance steel Characteristic steel ultimate tensile strength	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 12\%$ A_5
Stai Stai Hig 1	nless steel A2 (Materiess steel A4 (Materiess steel A4 (Materies) Threaded rod 1)4) Hexagon nut 1)4) Washer	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1. erial 1.4401 / 1.4404 / 1. erial 1.4401 / 1.4404 / 1. erial 1.452 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 (e.g.: EN ISO 887:200) Stainless steel A4, Hig	8.8 4311 4571 29 or 2 50 70 80 70 80 1.4307 1.4404 or 1.4 6, EN	f_{uk} = 800 N/mm² / 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-1 Characteristic steel ultimate tensile strength f_{uk} = 500 N/mm² f_{uk} = 700 N/mm² f_{uk} = 800 N/mm² for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 / 1.4311 / 1.4567 or 1.454 / 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 7 rosion resistance steel Characteristic steel	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² EN 10088-1:2014) EN 10088-1:2014) 1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 11, acc. to EN 10088-11 18, acc. to EN 10088-11 19014 1903:2000 or EN ISO 70 Characteristic steel	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 12\%$ A_5

¹⁾ Property class 70 or 80 for threaded rods and hexagon nuts up to M24 and Internal threaded anchor rods up to IG-M16

⁴⁾ Property class 80 only for stainless steel A4 and high corrosion resistance steel HCR


Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

²⁾ for IG-M20 only property class 50

 $^{^{3)}\,}A_5 > 8\%$ fracture elongation if \underline{no} use for seismic performance category C2

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material
Reinf	orcing bars	
1	EN 1007_1_1 7004 + Δ(Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Product description Materials reinforcing bar	Annex A 5

	Specification	s of intended use					
Anchorages subject to static a	nd quasi-static load	ls:					
	for a working I	ife of 50 years	for a working life of 100 years				
Base material	Non-cracked concrete	cracked concrete	Non-cracked concrete	cracked concrete			
Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD)	M8 to Ø8 to IG-M6 to	Ø32,	M8 to M30, Ø8 to Ø32, IG-M6 to IG-M20				
I: -40 °C to +40 °C¹)							
Anchorages subject to seismic	action:						
	for Performano	e Category C1	for Performance Category C2				
Base material	Cracked and non-cracked concrete						
Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD)	M8 to ∅8 to	,	M12 to	o M24			
Temperature Range:							

^{1) (}max long-term temperature +24 °C and max short-term temperature +40 °C)

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Specifications	Annex B 1

²⁾ (max long-term temperature +50 °C and max short-term temperature +80 °C) ³⁾ (max long-term temperature +72 °C and max short-term temperature +120 °C)

^{4) (}max long-term temperature +100 °C and max short-term temperature +160 °C)

Page 11 of European Technical Assessment ETA-17/0127 of 13 November 2020

English translation prepared by DIBt

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Specifications	Annex B 2

Table B1: Installation parameters for threaded rod											
Anchor size					M10	M12	M16	M20	M24	M27	M30
Diameter of elemen	t	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedmer	ni depin , ,		[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned ins		[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture ¹⁾	Push through i	through installation d _f		12	14	16	20	24	30	33	40
Maximum torque mo	ment	max T _{inst} ≤	[Nm]	10	20	40 ²⁾	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]		_f + 30 m : 100 mr			ı	h _{ef} + 2d ₀		
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	ince	c _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and threaded rod shall be filled force-fit with mortar.

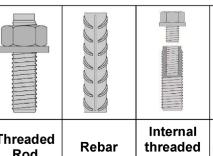
Table B2: Installation parameters for rebar

Rebar size				Ø 10 ¹⁾	Ø 12¹)	Ø 14	Ø 16	Ø 20	Ø 24 ¹⁾	Ø 25 ¹⁾	Ø 28	Ø 32
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Effective embedment depth	h _{ef,max} [mm]		160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm					h	n _{ef} + 2d ₀			
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded rod

Anchor size			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Internal diameter of sleeve	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of sleeve1)	d = d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective embedment death	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum torque moment	max T _{inst} ≤	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	I _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm		h _{ef} +	- 2d₀	
Minimum spacing	s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	c _{min}	[mm]	40	45	50	60	65	80


¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Installation parameters	Annex B 3

²⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B4: Parameter cleaning and setting tools

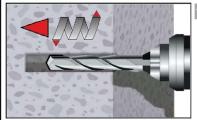
	916		YX							
Threaded Rod	Rebar	Internal threaded rod	d ₀ Drill bit - Ø HD, HDB, CD	Brus	l _b h - Ø	d _{b,min} min. Brush - Ø	Piston plug	Installatio of	on directio piston plu	
[mm]	[mm]	[mm]	[mm]	WIT-	[mm]	[mm]	WIT-	1		1
M8	8		10	RB10	11,5	10,5		•		
M10	8 / 10	IG-M6	12	RB12	13,5	12,5		No plug	roguirod	
M12	10 / 12	IG-M8	14	RB14	15,5	14,5		No plug required		
	12		16	RB16	17,5	16,5				
M16	14	IG-M10	18	RB18	20,0	18,5	VS18			
	16		20	RB20	22,0	20,5	VS20			
M20		IG-M12	22	RB22	24,0	22,5	VS22			
	20		25	RB25	27,0	25,5	VS25	h . >	h.>	
M24		IG-M16	28	RB28	30,0	28,5	VS28	h _{ef} > h _{ef} > 250 mm	all	
M27	24 / 25		30	RB30	31,8	30,5	VS30			
	24 / 25		32	RB32	34,0	32,5	VS32			
M30	28	IG-M20	35	RB35	37,0	35,5	VS35			
	32		40	RB40	43,5	40,5	VS40			

MAC - Hand pump (volume 750 ml)Drill bit diameter (d₀): 10 mm to 20 mm

Drill hole depth (h₀): < 10 d_s Only in non-cracked concrete CAC - Rec. compressed air tool (min 6 bar)
Drill bit diameter (d₀): all diameters

HDB - Hollow drill bit system

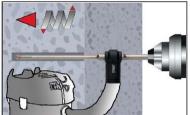
Drill bit diameter (d₀): all diameters


The hollow drill bit system contains the Würth Extraction Drill Bit, MKT Extraction Drill Bit, Heller Duster Expert hollow-core drill and a class M vacuum with minimum negative pressure of 253 hPa and flow rate of minimum 150 m³/h (42 l/s).

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Cleaning and setting tools	Annex B 4

Installation instructions

Drilling of the bore hole

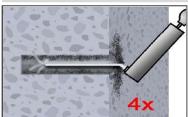


Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3).

Proceed with Step 2.

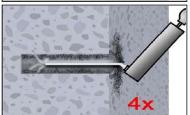
In case of aborted drill hole, the drill hole shall be filled with mortar.


Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.

In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.


MAC: Cleaning for dry and wet bore hole with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10 d_{nom}$ (uncracked concrete only!)

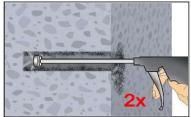
Starting from the bottom or back of the bore hole, blow the hole clean with handpump (Annex B 4) a minimum of four times until return air stream is free of noticeable dust.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used.

Finally blow the hole clean again with handpump (Annex B 4) a minimum of four times until return air stream is free of noticeable dust.

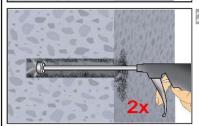
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

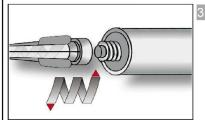
Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete


Intended Use
Installation instructions

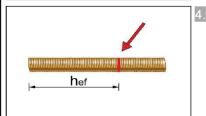
Annex B 5

Installation instructions (continuation)

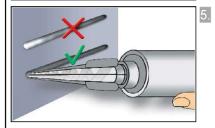

CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete


2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > $d_{b,min}$ (Table B5) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B5).



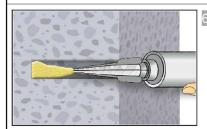
Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.



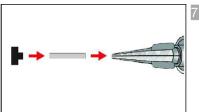
Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.

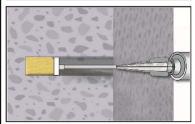
Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.



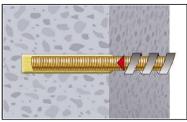
Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Installation instructions (continuation)	Annex B 6

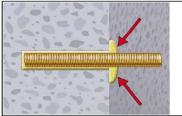
Installation instructions (continuation)



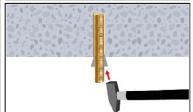
Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.


Piston plugs shall be used according to Table B4 for the following applications:

- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm Assemble mixing nozzle, extension and piston plug before injecting mortar.


Insert piston plug to back of the hole and inject adhesive. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used.

During injection the piston plug is naturally pushed out of the borehole by the back pressure of the mortar. Observe the gel-/ working times given in Table B5.

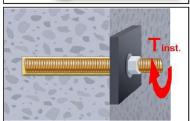


Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment mark has reached the surface level.

The anchor shall be free of dirt, grease, oil or other foreign material.

10. After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed.

11. For overhead application the anchor rod shall be fixed (e.g. wedges) until the mortar has started to harden.


Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Installation instructions (continuation)	Annex B 7

Installation instructions (continuation)

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Table B5: Maximum working time and minimum curing time

Concrete	temp	erature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
- 5 °C	to	- 1 °C	50 min	5 h	10 h
0 °C	to	+ 4 °C	25 min	3,5 h	7 h
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min
Cartridge	temp	erature		+5°C to +40°C	

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 8

	resistance of threaded	l rods		,	, ,						
Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cr	aracteristic tension resistance, Steel failu	re 1)									
Ste	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ste	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Ste	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Sta	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Sta	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Sta	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cr	aracteristic tension resistance, Partial fac	tor ²⁾									
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]	2,0							
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]	1,5							
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]	2,86							
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8	37			
	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]	1,6							
Cł	aracteristic shear resistance, Steel failure										
_ _	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
Without lever	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ĭ.	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Vith C	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
e a	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
<u> </u>	Steel, Property class 8.8 Stainless steel A2, A4 and HCR, class 50 Stainless steel A2, A4 and HCR, class 70	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
 	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80			_3)							
Cr	aracteristic shear resistance, Partial facto	r ²⁾		1							
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	57			
Ste	eel, Property class 4.8, 5.8 and 8.8	γMs,V	[-]				1,2	25			
Sta	ainless steel A2, A4 and HCR, class 50	γMs,V	[-]				2,3	88			
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
Sta	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	33			
$\overline{}$				1,							

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Anchor type not part of the ETA

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

²⁾ in absence of national regulation

Table C2:	Characteristic values for Concrete cone failure and Splitting with all kind of
	action

Anchor size				All Anchor types and sizes		
Concrete cone f	ailure		·			
Non-cracked con	crete	k _{ucr,N}	[-]	11,0		
Cracked concrete	•	k _{cr,N}	[-]	7,7		
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}		
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}		
Splitting		•				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}		
Edge distance 2,0 > h/h _{ef} > 1,3		C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$		
	h/h _{ef} ≤ 1,3			2,4 h _{ef}		
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}		

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete

Performances

Characteristic values for Concrete cone failure and Splitting with all kind of action

Annex C 2

Table	e C3: Charac for a wo	teristic value orking life of		n loads ι	ınder	· stati	c and	l qua	si-sta	tic ac	tion		
	r size threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30	
Steel fa			TNI	T			Λ	/	T-L	1- 04)			
	teristic tension resi	stance	N _{Rk,s}	[kN]	A _s · f _{uk} (or see Table C1) see Table C1								
Partial			γ _{Ms,N}	[-]				see Ta	ble C1				
	ned pull-out and o		red concrete C	20/25									
	l: 40°C/24°C			[N/mm²]	17	17	16	15	14	13	13	13	
ranç		Dry, wet	^τ Rk,ucr	 	17	17	16	15	14	13	13	13	
Temperature range	II: 80°C/50°C	concrete and flooded bore	^τ Rk,ucr	[N/mm²]	17	17	16	15	14	13	13	13	
npera	III: 120°C/72°C	hole	τ _{Rk,ucr}	[N/mm²]	15	14	14	13	12	12	11	11	
Ten	IV: 160°C/100°C		^τ Rk,ucr	[N/mm²]	12	11	11	10	9,5	9,0	9,0	9,0	
Charac	teristic bond resist	ance in cracked o	concrete C20/2	5									
ange	l: 40°C/24°C		^τ Rk,cr	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
Temperature range	II: 80°C/50°C	Dry, wet concrete and	τ _{Rk,cr}	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
oerat	III: 120°C/72°C	flooded bore hole	^τ Rk,cr	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
Tem	IV: 160°C/100°C	-	^τ Rk,cr	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
Redukt	ion factor ψ ⁰ sus in	cracked and nor	-cracked concr	ete C20/25									
nge	22 I: 40°C/24°C						0,	90					
l ere	II: 80°C/50°C	Dry, wet			0,87								
Temperature range	III: 120°C/72°C	flooded bore hole	Ψ ⁰ sus	[-]	0,75								
Temp	IV: 160°C/100°C							0,	66				
			C25/30	1,02									
			C30/37						04				
	sing factors for cond	crete	C35/45						07				
Ψс			C40/50						80				
			C45/55						09				
Concre	ete cone failure		C50/60					1,	10				
Concre		televant paramete	 er					see Ta	ble C2				
Splittir													
Installa	R ation factor	televant paramet	er					see Ta	ble C2				
		MAC					1,2			No Per	forman essed	ice	
for dry	and wet concrete	CAC	- γ _{inst}	[-]				1	,0	433			
		HDB	1,11131	''					,2				
for floo	ded bore hole	CAC							,4				
									ı				
	n Injection Syster	m WIT-UH 300 /	WIT-VH 300 /	WIT-VM 3	00 for	concr	ete			A	0 0		
	Performances Characteristic values of tension loads under static and quasi-static action									Anne	x C 3		

1,2

1,4

Table C4: Character for a w	teristic value orking life of		on loads i	unde	r stat	ic and	d qua	si-sta	atic a	ction				
Anchor size threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30			
Steel failure														
Characteristic tension res	istance	N _{Rk,s}	[kN]	A _s ⋅ f _{uk} (or see Table C1)										
Partial factor		γ _{Ms,N}	[-]	see Table C1										
Combined pull-out and	concrete failure	•												
Characteristic bond resist	ance in non-crac	ked concrete C	20/25											
T: 40°C/24°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm²]	17	17	16	15	14	13	13	13			
ет II: 80°C/50°C	II: 80°C/50°C hole		[N/mm²]	17	17	16	15	14	13	13	13			
Characteristic bond resist	ance in cracked	concrete C20/2	25			•								
I: 40°C/24°C II: 80°C/50°C	Dry, wet concrete and	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5			
Ten and a second	flooded bore hole	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5			
	•	C25/30	•	1,02										
		C30/37		1,04										
Increasing factors for con-	crete	C35/45		1,07										
ψ c		C40/50						,08						
		C45/55						,09						
		C50/60					1,	,10						
Concrete cone failure)-l1 ·		1					- - -						
	Relevant parameter						see 1	able C2						
Splitting	Relevant parameter						see Table C2							
Installation factor	cievani paramet	CI					300 I	able UZ	-					
mstanation lactor	MAC			1,2					No Performance assessed					
for dry and wet concrete	CAC	γinst	[-]	1,0					30336U					

HDB

CAC

for flooded bore hole

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 4

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm		•		•	•					
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]			0,5 •	A _s ∙ f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	N _{el} ∙ f _{uk}	(or see	Table C	C1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	$\gamma_{Ms,V}$	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ_{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	I _f	[mm]		n	nin(h _{ef} ; 1	2 · d _{nor}	n)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 5

Anchor size internal thre	eaded anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Steel failure ¹⁾					I	1		ı				
Characteristic tension res	istance, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123			
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196			
Partial factor, strength cla	ss 5.8 and 8.8	γ _{Ms,N}	[-]			1	,5	•				
Characteristic tension res		N _{Rk,s}	[kN]	14	26	41	59	110	124			
Steel A4 and HCR, Streng	gth class 70 ²⁾			17	20		39	110				
Partial factor		γMs,N	[-]			1,87			2,86			
Combined pull-out and			000/05									
Characteristic bond resist	ance in non-cracked			47	10	15	14	42	12			
1: 40°C/24°C	Dry, wet concrete	^τ Rk,ucr	[N/mm²]	17	16	15	14		13			
ii: 80°C/50°C	and	^τ Rk,ucr	[N/mm²]	17	16	15	14		13			
E and a second and	flooded bore hole	^τ Rk,ucr	[N/mm²]	14	14	13	12	12	11			
μ IV: 160°C/100°C		^τ Rk,ucr	[N/mm²]	11	11	10	9,5	9,0	9,0			
Characteristic bond resist	ance in cracked con	crete C20)/25			_	1					
<u>u</u> 1: 40°C/24°C		$\tau_{Rk,cr}$	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0			
ili: 80°C/50°C	Dry, wet concrete	τ _{Rk,cr}	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0			
I: 40°C/24°C	and flooded bore hole	τ _{Rk,cr}	[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0			
।V: 160°C/100°C		τ _{Rk,cr}	[N/mm²]	5,5	6,0	6,5	6,0	5,5	5,5			
 Reduktion factor ψ ⁰ sus in	cracked and non-cr		ncrete C20	/25								
· · · · · · · · · · · · · · · · · · ·						0.	90					
### ### ### ### ### ### ### ### ### ##	Dry, wet concrete	Ψ^0 sus				<u> </u>	87					
e	and		s [-]	0,75								
III. 120 C/12 C	flooded bore hole					•		110 13 13 13 12 5 9,0 7,0 6,0 7,0 6,0 7,5 22 22 22 24 25 26 26 27 27 28 28 28 28 28 28 28 28				
<mark>⊮</mark> IV: 160°С/100°С			 25/30	0,66								
		-	30/37	1,02 1,04								
Increasing factors for con-	crete		35/45				07					
Ψς		-	10/50				08					
•			15/55				09					
		C5	50/60			1,	10					
Concrete cone failure												
Relevant parameter						see Ta	able C2					
Splitting failure						T-	-1-00					
Relevant parameter Installation factor						see 18	able C2					
installation factor	MAC				1,2		No Perfe	ormance a	ssessec			
for dry and wet concrete	CAC				• ,-	1	,0	51111Q1100 0				
,	HDB	γinst	[-]				,2					
for flooded bore hole	CAC						,4					
¹⁾ Fastenings (incl. nut and The characteristic tension ²⁾ For IG-M20 strength class	on resistance for steel								d rod.			
Würth Injection Syste	m WIT-UH 300 / W	IT-VH 30	00 / WIT-V	M 300 fo	r concre	te						
Performances							\neg	Annex (6 6			

1,4

Anchor size internal thr	eaded anch	or rods	 S		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Steel failure ¹⁾												
Characteristic tension res	sistance,	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Steel, strength class	,	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor, strength cla	ass 5.8 and 8	3.8	γ _{Ms,N}	Ms,N [-] 1,5								
Characteristic tension res Steel A4 and HCR, Stren			N _{Rk,s}	N _{Rk,s} [kN] 14 26 41 59					110	124		
Partial factor			γ _{Ms,N}	[-]	1,87 2							
Combined pull-out and	concrete co	ne fail	· '									
Characteristic bond resis	tance in non	-cracke	d concrete	C20/25								
Temperature range II: 40°C/24°C	I: 40°C/24°C Dry, wet concrete		^τ Rk,ucr,100	[N/mm²]	17	16	15	14	13	13		
II: 80°C/50°C		e		[N/mm²]	17	16	15	14	13	13		
Characteristic bond resis	ncrete C20/	25										
Temperature range II: 80°C/20°C	Dry, wet co	oncrete	^τ Rk,cr,100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5		
II: 80°C/50°C	flooded bo	flooded bore hole		[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5		
			C25		1,02							
			C30.		1,04							
Increasing factors for cor	crete		C35					07				
Ψс			C40					08				
			C45					09				
Concrete cone failure			C50	/60			1,	10				
Relevant parameter							see Ta	able C2				
Splitting failure				l								
Relevant parameter							see Ta	able C2				
Installation factor												
for dry and wet concrete	MAC					1,2		No Perf	ormance a	assessed		
	CAC		γ _{inst}	[-]	1			1,0				
	HDB			''	1,2							

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

2) For IG-M20 strength class 50 is valid

CAC

for flooded bore hole

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances	Annex C 7
Characteristic values of tension loads under static and quasi-static action	

Table C8: Characteris	tic va	lues of	shear	loads	under s	static ar	nd quas	i-static	action	
Anchor size for internal threade	ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure without lever arm ¹⁾						•	•	•		
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61	
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98	
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]				1,25			
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	7	7 13 20 30				40	
Partial factor		γ _{Ms,V}	[-]			1,56			2,38	
Ductility factor		k ₇	[-]				1,0			
Steel failure with lever arm ¹⁾										
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325	
Steel, strength class	8.8	М ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519	
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]	1,25						
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456	
Partial factor		γ _{Ms,V}	[-]			1,56			2,38	
Concrete pry-out failure										
Factor		k ₈	[-]				2,0			
Installation factor		γinst	[-]				1,0			
Concrete edge failure										
Effective length of fastener		I _f	[mm]		min	(h _{ef} ; 12 • c	I _{nom})		min(h _{ef} ; 300mm	
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30	
Installation factor		γinst	[-]			•	1,0			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element. ²⁾ For IG-M20 strength class 50 is valid

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table	e C9: Charac for a wo	teristic va orking life			oads	und	er sta	atic a	nd q	uasi	-stati	ic act	tion	
Ancho	r size reinforcing	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel f			1							. 1\				
	teristic tension resi	istance	N _{Rk,s}	[kN]			ı			f _{uk} 1)	1	1	ı	Г
Cross	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial			γMs,N	[-]					1,	4 ²⁾				
	ned pull-out and o			1 000/0										
	teristic bond resista					4.4	44	44	40	40	10	40	40	40
ture	l: 40°C/24°C	Dry, wet concrete	^τ Rk,ucr	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Temperature range	II: 80°C/50°C	and	^τ Rk,ucr	[N/mm²]	14	14	14	14	13	13	13	13	13	13
em ra	III: 120°C/72°C	flooded	^τ Rk,ucr	[N/mm²]	13	12	12	12	12	11	11	11	11	11
	IV: 160°C/100°C	bore hole	^τ Rk,ucr	[N/mm²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
	teristic bond resista			1							T			
ture	l: 40°C/24°C	Dry, wet	^τ Rk,cr	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
nperat range	II: 80°C/50°C	concrete and	^τ Rk,cr	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature range	III: 120°C/72°C	flooded bore hole	^τ Rk,cr	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
≝	IV: 160°C/100°C	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0		
Redukt	tion factor ${\psi^0}_{ extsf{sus}}$ in	d concrete	C20/2	5										
ange	I: 40°C/24°C	Dry, wet			0,90									
ure ra	II: 80°C/50°C	concrete and	Ψ^0 sus	[-]					0,	87				
Temperature range	III: 120°C/72°C	flooded bore hole							0,	75				
Tem	IV: 160°C/100°C	bore note							0,	66				
			C25		1,02									
	footore for con-		C30		1,04									
πcreas Ψ _C	sing factors for cond	Siele	C35		1,07 1,08									
**			C45		1,08									
			C50		1,10									
Concre	ete cone failure		•		1 11.5									
	nt parameter								see Ta	able C	2			
Splittir	-				Ι									
	nt parameter								see Ta	able C	2			
Installa	ation factor	D44.0	T	T			4.0				D (
for dry	and wet concrete	MAC CAC	1				1,2		1	<u> No</u> ,0	rentor	mance	asses	ssed
loi di y	and wet contrete	HDB	γ _{inst}	[-]						,0 ,2				
for floo	ded bore hole	CAC	1							<u>,2</u> ,4				
	hall be taken from th osence of national re		ns of reinforci	ng bars						,				
Perfor	n Injection System rmances cteristic values of ter						or con	crete			Α	nne	с С 9	

1,4

Table C10: Charac	cteristic va			oads	und	er st	atic a	and c	ıuasi	-stat	ic ac	tion	
Anchor size reinforcing				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure	- Sui			D 0		D 12		D 10	D 20		D 20	2 20	2 02
Characteristic tension res	sistance	N _{Rk,s}	[kN]	$A_s \cdot f_{uk}^{1}$									
Cross section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γ _{Ms.N}	$\gamma_{Ms,N}$ [-] 1,4 ²										
Combined pull-out and	concrete fail												
Characteristic bond resist			rete C20/2	25									
I: 40°C/24°C I: 80°C/50°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Эд ш: 80°С/50°С	flooded bore hole	^τ Rk,ucr,100	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Characteristic bond resist	tance in cracl	ced concrete	C20/25							•			
Temperature range II: 80°C/24°C	Dry, wet concrete and	^τ Rk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
ет II: 80°C/50°C	flooded bore hole	^τ Rk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
	•	C25	/30	1,02									
		C30		1,04									
Increasing factors for con	crete	C35		1,07									
ψ c		C40							08				
		C45							09 10				
Concrete cone failure		050	760					Ι,	10				
Relevant parameter								see Ta	able C	2			
Splitting								230 10		_			
Relevant parameter								see Ta	able C	2			
Installation factor										_			
	MAC			1,2 No Performance assessed							ssed		
for dry and wet concrete	CAC	7,,	,,	1.0									
	HDB	^γ inst	[-]	1,2									

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

CAC

for flooded bore hole

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 10

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm				•	•		•	•				
Characteristic shear resistance	V ⁰ Rk,s	[kN]	0,50 • A _s • f _{uk} 1)									
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Ductility factor	k ₇	[-]	1,0									
Steel failure with lever arm	•	•										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]					1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]			•		•	1,5 ²⁾				
Concrete pry-out failure	•	•										
Factor	k ₈	[-]						2,0				
Installation factor	γinst	[-]						1,0				
Concrete edge failure		•										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300mm)						mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ_{inst}	[-]	1,0									

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 11

Table C12: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size threaded r	od		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete C20/25 under static and quasi-static action for a working life of 50 and 100 years										
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete unde	er static and o	quasi-static actio	n for a w	orking l	ife of 50	and 100) years			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor τ ;

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C13: Displacements under shear load²⁾ (threaded rod)

Anchor size threa	M8	M10	M12	M16	M20	M24	M27	M30		
Non-cracked and cracked concrete under static and quasi-static action										
All temperature	$\delta_{ m V0}$ -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{ m V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete
Performances

Displacements under static and quasi-static action (threaded rods)

Annex C 12

Table C14: Displacements under tension load ¹⁾ (Internal threaded rod)									
Anchor size Internal thr	eaded rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Non-cracked concrete under static and quasi-static action for a working life of 50 and 100 years								•	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046	
l: 40°C/24°C ll: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060	
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048	
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179	
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184	
Cracked concrete under	r static and qu	asi-static action	for a work	ing life of	50 and 100	years			
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106	
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,170	0,110	0,116	0,122	0,128	0,137	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110	
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412	
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424	

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-factor} \ \cdot \tau; \end{split}$$

 τ : action bond stress for tension

Table C15: Displacements under shear load²⁾ (Internal threaded rod)

Anchor size Inte	rnal threaded ro	d	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Non-cracked and cracked concrete under static and quasi-static action										
All temperature	$\delta_{ m V0}$ -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04		
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06		

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for cond	rete
Performances	

Annex C 13

Displacements under static and quasi-static action (Internal threaded anchor rod)

Table C16: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked concrete under static and quasi-static action for a working life of 50 and 100 years												
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
range IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Cracked concrete	under statio	and quasi-stat	ic actio	n for a	workin	g life of	f 50 and	l 100 ye	ears			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
range IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C17: Displacements under shear load²⁾ (rebar)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked and cracked concrete under static and quasi-static action												
All temperature	$\delta_{ m V0}$ -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{ m V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Displacements under static and quasi-static action (rebar)	Annex C 14

Table C18: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 and 100 years

Ancho	or size threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel	failure											
Characteristic tension resistance N _{Rk,s,eq,}				[kN]				1,0 •	$N_{Rk,s}$			
Partial	factor		γ _{Ms,N}	[-]				see Ta	able C1			
Comb	ined pull-out and co	ncrete failure	•									
Chara	cteristic bond resistar	nce in cracked a	nd non-cracke	d concrete (20/25							
<u>e</u>	I: 40°C/24°C	Dry, wet concrete and flooded bore hole	^τ Rk,eq,C1	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
 ηperatυ range	II: 80°C/50°C		^τ Rk,eq,C1	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature range	III: 120°C/72°C		^τ Rk,eq,C1	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
Te	IV: 160°C/100°C	Tible	^τ Rk,eq,C1	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
Increa	sing factors for concr	ete ψ _C	C25/30 to	C25/30 to C50/60 1,0								
Install	lation factor		•									
for dry	and wet concrete	CAC						1	,0			
for dry and wet concrete		HDB	γ_{inst}	[-]	1,2							
for floo	oded bore hole	CAC						1	,4			

Table C19: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size threaded rod	М8	M10	M12	M16	M20	M24	M27	M30			
Steel failure											
Characteristic shear resistance (Seismic C1)	[kN]	0,70 • V ⁰ _{Rk,s}									
Partial factor	γ _{Ms,V}	[-]	see Table C1								
Factor for annular gap $\alpha_{\rm gap}$ [-]				0,5 (1,0)1)							

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (threaded rod)	Annex C 15

Tabl	Table C20: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 and 100 years													
Ancho	or size reinforcing		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Steel f	failure			•	•	•	•	•	•					
Charac	cteristic tension res	istance	N _{Rk,s,eq,C1}	[kN]					1,0 • A	∖ _s • f _{uk}	1)			
Cross	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor $\gamma_{Ms,N}$ [-]						•	•	•	1,	4 ²⁾	•			
Comb	Combined pull-out and concrete failure													
Charac	cteristic bond resist	ance in crack	ed and non-	cracked co	ncrete	C20/2	25							
ange	I: 40°C/24°C	Dry, wet concrete	^T Rk,eq,C1	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
ure ra	II: 80°C/50°C		^τ Rk,eq,C1	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Femperature range	III: 120°C/72°C	flooded	^τ Rk,eq,C1	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Tem	IV: 160°C/100°C	bore hole	^τ Rk,eq,C1	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Increa	sing factors for con	crete ψ _C	C25/30 to	C50/60	1,0									
Install	ation factor													
CAC									1	,0				
for dry and wet concrete		HDB	γ_{inst}	[-]					1	,2				
for flooded bore hole		CAC							1	4				

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars

Table C21: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size reinforcing bar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Steel failure												
Characteristic shear resistance	V _{Rk,s,eq}	[kN]		0,35 • A _s • f _{uk} 1)								
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,} ∨	[-]	1,5 ²⁾									
Factor for annular gap	0,5 (1,0) ³⁾											

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (rebar)	Annex C 16

²⁾ in absence of national regulation

²⁾ in absence of national regulation

³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Table C22: Characteristic values of tension loads under seismic action (performance category C2) for a working life of 50 and 100 years

Ancho	r size threaded rod				M12	M16	M20	M24		
Steel fa	ailure			,						
Characteristic tension resistance, Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70			N _{Rk,s,eq,C2}	[kN]		1,0 • N _{Rk,s}				
Partial t	factor		γ _{Ms,N}	[-]		see Ta	able C1			
Combi	ned pull-out and co	ncrete failure								
Charac	teristic bond resistar	nce in cracked a	nd non-cracke	d concrete C	20/25					
<u>e</u>	I: 40°C/24°C	Dry, wet	τ _{Rk,eq,C2}	[N/mm²]	3,6	3,5	3,3	2,3		
nperatu range	II: 80°C/50°C		^τ Rk,eq,C2	[N/mm²]	3,6	3,5	3,3	2,3		
Temperature range	III: 120°C/72°C	flooded bore	^τ Rk,eq,C2	[N/mm²]	3,1	3,0	2,8	2,0		
e i	IV: 160°C/100°C	hole	^τ Rk,eq,C2	[N/mm²]	2,5	2,7	2,5	1,8		
Increas	ing factors for concr	ete ψ_{c}	C25/30 to	C50/60	1,0					
Installa	ation factor									
for dry and wet concrete CAC		γ _{inst} [-]		1,0 1,2						
for flood	ded bore hole	CAC			1,4					

Table C23: Characteristic values of shear loads under seismic action (performance category C2)

Anchor size threaded rod			M12	M16	M20	M24
Steel failure						
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]		0,70 •	V ⁰ Rk,s	
Partial factor	γ _{Ms,V}	[-]	see Table C1			
Factor for annular gap	$lpha_{\sf gap}$	[-]		0,5 (1,0)1)	

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C2) for a working life of 50 and 100 years (threaded rod)	Annex C 17

Table C24: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size threaded rod M12 M16 M20 M24										
Cracked concrete under seismic action (performance category C2)										
All temperature	δ N,eq,C2(DLS)	[mm]	0,24	0,27	0,29	0,27				
ranges	$\delta_{ extsf{N}, ext{eq,C2(ULS)}}$	[mm]	0,55	0,51	0,50	0,58				

Table C25: Displacements under shear load (threaded rod)

Anchor size threa	ded rod		M12	M16	M20	M24	
Cracked concrete under seismic action (performance category C2)							
All temperature	$\delta_{ m V,eq,C2(DLS)}$	[mm]	3,6	3,0	3,1	3,5	
ranges	$\delta_{V,eq,C2(ULS)}$	[mm]	7,0	6,6	7,0	9,3	

Würth Injection System WIT-UH 300 / WIT-VH 300 / WIT-VM 300 for concrete	
Performances Displacements under seismic action (performance category C2) (threaded rods)	Annex C 18