

European Technical Assessment

ETA 20/0647 of 17/09/2020

(English language translation, the original version in Czech language)

Technical Assessment Body issuing the ETA:

Technical and Test Institute for Construction Prague

Trade name of the construction product Würth Injection System WIT-VM 210

WIT-VM 210 Blue WIT-VM 210 Tropical WIT-VM 210 Express

Product family to which the Product area code: 33

construction product belongsBonded anchor for use in concrete

ManufacturerAdolf Würth GmbH & Co. KGReinhold-Würth-Straße 12-17

74653 Künzelsau Germany

Manufacturing plant(s) Plant 3, Germany

This European Technical Assessment 23 pages including 20 Annexes which form an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation EAD 330499-01-0601 Bonded fasteners for use in concrete

issued in accordance with regulation (EU) No 305/2011, on the basis of

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. **Technical description of the product**

The Würth Injection System WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Tropical and WIT-VM 210 Express for cracked and uncracked concrete is a bonded anchor consisting of a cartridge with injection mortar and a steel element. The steel elements consists of a commercial threaded rods with a hexagon nut and a washer or reinforcing bar.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Mechanical resistance and stability (BVIX 1)	
Essential characteristic	Performance
Characteristic resistance to tension and shear load for static and quasi-static loading	Annex C 1 to C 5
Displacements under short term and long term loading	Annex C 6 to C 7
Durability	Annex B 1
Characteristic resistance and displacements for seismic performance categories C1 and C2	Annex C 8 to C 10

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission the system of assessment verification of constancy of performance (see Annex V to Regulation (EU)

No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors	For fixing and/or supporting to		
for use in	concrete, structural elements (which		4
concrete	contributes to the stability of the	-	ı
	construction works) or heavy units		

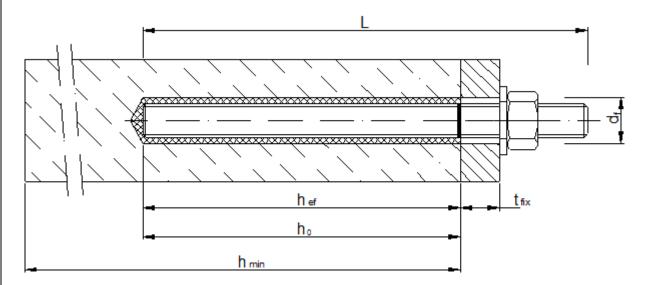
Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

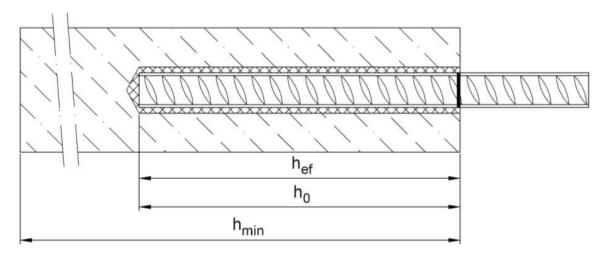
The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 17.09.2020

By


Ing. Mária Schaan

Head of the Technical Assessment Body


The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Installation threaded rod

prepositioned installation or push through installation (annular gap filled with mortar)

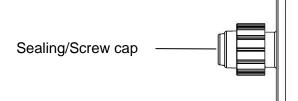
Installation reinforcing bar

d_f = diameter of clearance hole in the fixture

 t_{fix} = thickness of fixture

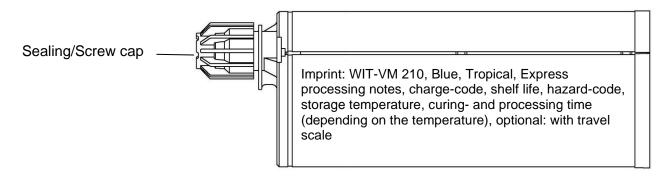
n_{ef} = effective embedment depth

 h_0 = depth of drill hole

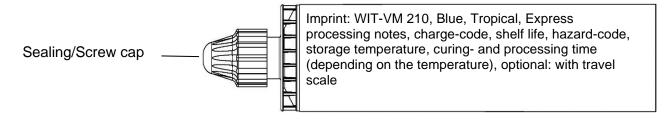

 h_{min} = minimum thickness of member

Würth Injection System for concrete
WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical
Product description
Installed conditions

Annex A 1


Cartridge:

150 ml, 280 ml, 300 ml up to 330 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: WIT-VM 210, Blue, Tropical, Express processing notes, charge-code, shelf life, hazard-code, storage temperature, curing- and processing time (depending on the temperature), optional: with travel scale

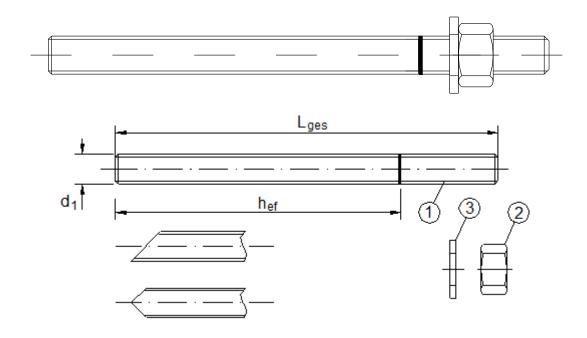
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

165 ml and 300 ml cartridge (Type: "foil tube")

Static mixer

14W

Fill & Clean



Würth Injection System for concrete WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical

Annex A 2

Product description Injection system

Threaded rod M8, M10, M12, M16, M20, M24 with washer and hexagon nut

Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

Würth Injection System for concrete WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical

Product description
Threaded rod

Filling washer

Annex A 3

Table A1: Materials Part Designation Material Steel, zinc plated (Steel acc. to EN 10087:1998 or EN 10263:2001) zinc plated ≥ 5 µm acc. to EN ISO 4042:1999 or acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 or hot-dip galvanized ≥ 40 µm sherardized ≥ 45 µm acc. to EN ISO 17668:2016 Characteristic steel Characteristic steel Property class Elongation at fracture ultimate tensile strength yield strength $A_5 > 8\%$ 4.6 fuk=400 N/mm² fyk=240 N/mm² $A_5 > 8\%$ 4.8 | f_{uk}=400 N/mm² fyk=320 N/mm2 1 Anchor rod acc. to fuk=500 N/mm² f_{yk}=300 N/mm² $A_5 > 8\%$ 5.6 EN ISO 898-1:2013 5.8 fuk=500 N/mm² fyk=400 N/mm² $A_5 > 8\%$ 8.8 fuk=800 N/mm² f_{vk}=640 N/mm² $A_5 > 12\%^{2}$ for anchor rod class 4.6 or 4.8 4 acc. to 5 2 Hexagon nut for anchor rod class 5.6 or 5.8 EN ISO 898-2:2012 8 for anchor rod class 8.8 Steel, zinc plated, hot-dip galvanized or sherardized Washer За (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000) 3b Filling washer Steel, zinc plated, hot-dip galvanized or sherardized Stainless steel A2 (Material 1.4301 / 1.4311 / 1.4307 / 1.4567 or 1.4541, acc. to EN 10088-1:2014) Stainless steel A4 (Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014) High corrosion resistance steel (Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014) Characteristic steel Characteristic steel Property class Elongation at fracture ultimate tensile strength vield strength $A_5 \ge 8\%$ 50 f_{uk}=500 N/mm² fyk=210 N/mm² Anchor rod 1) 1 acc. to fuk=700 N/mm² $A_5 > 12\%^{2}$ fyk=450 N/mm² 70 EN ISO 3506-1:2009 $A_5 > 12\%^{2}$ fuk=800 N/mm² fyk=600 N/mm² 80 for anchor rod class 50 50 acc to Hexagon nut 1) for anchor rod class 70 2 70 EN ISO 3506-1:2009 80 for anchor rod class 80 A2: Material 1.4301, 1.4311 / 1.4307 / 1.4567 or 1.4541, EN 10088-1:2014 A4: Material 1.4401, 1.4404 / 1.4571 / 1.4362 or 1.4578, EN 10088-1:2014 Washer 3a HCR: Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014 (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000) 3b Filling washer Stainless steel A4, High corrosion resistance steel

Würth Injection System for concrete
WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical

Product description
Materials threaded rod

Annex A 4

¹⁾ Property class 80 only for stainless steel A4 + high corrosion resistance steel HCR

²⁾ A_s > 8% fracture elongation if <u>no</u> requirement for performance C2 exists

Reinforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25

- Minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d (d: nominal diameter of the bar; h: rib height of the bar)

Table A2: Materials

Part	Designation	Material Control of the Control of t				
Rein	forcing bars					
3	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars are de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$				

Würth Injection System for concrete WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical

Product descriptionReinforcing bar
Materials reinforcing bar

Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: Threaded rod M8 to M24, Rebar Ø 8 to Ø 25
- Seismic action for performance category C1: Threaded rod M8 to M16 (except hot-dip galvanised rods)
- Seismic action for performance category C2: Threaded rod M12 to M16 (except hot-dip galvanised rods)

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Uncracked concrete: Threaded rod M8 to M24, Rebar Ø 8 to Ø 25
- · Cracked concrete: Threaded rod M8 to M16

Temperature range:

- T1: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- T2: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel class A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel class A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement
 or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- · Anchorages under static or quasi-static actions are designed in accordance with EN 1992-4

Concrete condition:

- 11 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete
- I2 installation in water-filled drill holes (not sea water) and use in service in dry or wet concrete

Installation:

- · Hole drilling by hammer or compressed air drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

D3 - Downward and horizontal and upwards (e.g. overhead) installation.

Würth Injection System for concrete	
WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical	
Intended use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod

Anchor size				M 8	M 10	M 12	M 16	M 20	M 24
Diameter of element c		$d = d_{nom}$	[mm]	8	10	12	16	20	24
Nominal drill hole diame	ter	d ₀	[mm]	10	12	14	18	24	28
Effective embedment depth		h _{ef,min}	[mm]	60	60	70	80	90	96
Enective embedment de	песиче етпреители аерит		[mm]	160	200	240	320	400	480
Diameter of clearance	Prepositioned inst	allation d _f	[mm]	9	12	14	18	22	26
hole in the fixture	Push through installation df		[mm]	12	14	16	20	24	30
Maximum torque momer	nt	T _{inst} ≤	[Nm]	10	20	40	80	120	160
Thickness of fixture		t _{fix,min} >	[mm]	0					
THICKNESS OF HIXTURE		t _{fix,max} <	[mm]	1500					
Minimum thickness of member		h _{min}	[mm]		_{ef} + 30 mı ≥ 100 mm			h _{ef} + 2d ₀	
Minimum spacing		Smin	[mm]	40	50	60	80	100	120
Minimum edge distance		Cmin	[mm]	40	50	60	80	100	120
		•	•						

Table B2: Installation parameters for rebar

Rebar size			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25
Nominal drill hole diameter	d ₀	[mm]	12	14	16	18	20	25	32
C# - time and a december	h _{ef,min}	[mm]	60	60	70	75	80	90	100
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	500
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		$n_{cf} + 2\alpha$				
Minimum spacing	Smin	[mm]	50	55 65 70		70	80	100	130
Minimum edge distance	Cmin	[mm]	50	55	65	70	80	100	130

Würth Injection System for concrete WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical

Intended use Installation parameters Annex B 2

Steel brush WIT-RMB

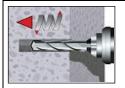
Table B3: Parameter cleaning and setting tools

Threaded Rod	Rebar	d₀ Drill bit - Ø	d₀ Brush	- Ø	d _{b,min} min. Brush - ∅
[mm]	[mm]	[mm]	[mm]		[mm]
M8		10	WIT-RMB10 12		10,5
M10	8	12	WIT-RMB12	14	12,5
M12	10	14	WIT-RMB14	16	14,5
	12	16	WIT-RMB16	18	16,5
M16	14	18	WIT-RMB18	20	18,5
	16	20	WIT-RMB20	22	20,5
M20		24	WIT-RMB24	26	24,5
	20	25	WIT-RMB25	27	25,5
M24		28	WIT-RMB28 30		28,5
	25	32	WIT-RMB32	34	32,5

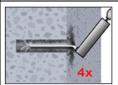
Hand pump (volume 750 ml)

Drill bit diameter (d_o): 10 mm to 20 mm and anchorage depth up to 240 mm

Recommended compressed air tool (min 6 bar) All applications


Würth Injection System for concrete
WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical
· · · · · · · · · · · · · · · · · · ·

Intended use


Cleaning and setting tools

Annex B 3

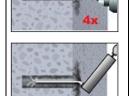
Installation instructions

1 Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or B2). In case of aborted drill hole: the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

2a Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

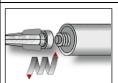
The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.


For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) must

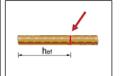
be used.


2b Check brush diameter (Table B3) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B3) a minimum of four times.

If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3).


2c Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) <u>must</u> be used.


or

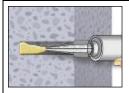
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again

3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use.

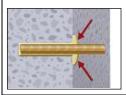
For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used.

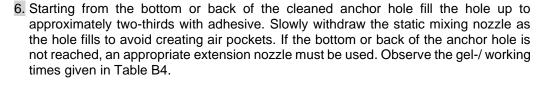
4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

5. Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or blue (WIT-VM 210 Blue) colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

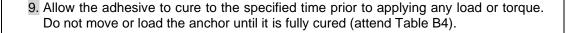

Würth Injection System for concrete WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical

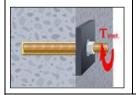
Intended use


Installation instructions


Annex B 4

Installation instructions (continuation)





7. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

- 8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
- +20°C

10. After full curing, the add-on part can be installed with the max. torque (Table B1) by using a calibrated torque wrench.

Table B4: Minimum curing time

Concrete	WIT-VM 21	0 Tropical	WIT-VM 210, WI	T-VM 210 Blue ¹⁾	WIT-VM 210 Express		
temperature	Max. working time	Min. curing time	Max. working time	Min. curing time	Max. working time	Min. curing time	
-10 to -6 °C		_			60 min	4 h	
-5 to -1 °C			90 min	6 h	45 min	2 h	
0 to +4 °C			45 min	3 h	25 min	80 min	
+5 to +9 °C			25 min	2 h	10 min	45 min	
+10 to +14 °C	30 min	5 h	20 min	100 min	4 min	25 min	
+15 to +19 °C	20 min	210 min	15 min	80 min	3 min	20 min	
+20 to +29 °C	15 min	145 min	6 min	45 min	2 min	15 min	
+30 to +34 °C	10 min	80 min	4 min	25 min			
+35 to +39 °C	6 min	45 min	2 min	20 min			
+40 to +44 °C	4 min	25 min					
+45 °C	2 min	20 min					
Cartridge temperature	+5°C to	+5°C to +45°C		+5°C to +40°C		+30°C	

¹⁾ The WIT-VM 210 Blue injection mortar has a curing time proof by changing the color from blue to gray after curing minimum time. The curing time proof is only valid for the standard version of the mortar.

Würth Injection System for concrete WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical	
Intended use	Annex B 5
Installation instructions (continuation)	
Curing time	

Size				M 8	M 10	M 12	M 16	M 20	M 24
Cross	s section area	As	[mm ²]	36,6	58	84,3	157	245	353
Char	acteristic tension resistance, Steel failure 1)								
Steel	, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141
Steel	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176
Steel	, Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282
Stain	less steel A2, A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177
Stain	less steel A2, A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247
Stain	less steel A4 and HCR, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282
Char	acteristic tension resistance, Partial safety factor 2)								
Steel	, Property class 4.6	γ _{Ms,N}	[-]			2	,0		
Steel	, Property class 4.8	γ _{Ms,N}	[-]			1	,5		
Steel	, Property class 5.6	γ _{Ms,N}	[-]			2	,0		
Steel	, Property class 5.8	γMs,N	[-]			1	,5		
Steel	, Property class 8.8	γms,N	[-]			1	,5		
Stain	less steel A2, A4 and HCR, Property class 50	γ _{Ms,N}	[-]			2,	86		
Stain	less steel A2, A4 and HCR, Property class 70	γ _{Ms,N}	[-]	1,87					
Stain	less steel A4 and HCR, Property class 80	γMs,N	[-]			1	,6		
Char	acteristic shear resistance, Steel failure 1)								
	Steel, Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9 (8)	14 (13)	20	38	59	85
arm	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106
ever	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141
Without lever arm	Stainless steel A2, A4 and HCR, Property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88
	Stainless steel A2, A4 and HCR, Property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124
	Stainless steel A4 and HCR, Property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141
	Steel, Property class 4.6 and 4.8	$M^0_{Rk,s}$	[Nm]	15 (13)	30 (27)	52	133	260	449
яш	Steel, Property class 5.6 and 5.8	$M^0_{Rk,s}$	[Nm]	19 (16)	37 (33)	65	166	324	560
Vith lever arm	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896
ith le	Stainless steel A2, A4 and HCR, Property class 50	$M^0_{Rk,s}$	[Nm]	19	37	66	167	325	561
≥	Stainless steel A2, A4 and HCR, Property class 70	$M^0_{Rk,s}$	[Nm]	26	52	92	232	454	784
	Stainless steel A4 and HCR, Property class 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896
Char	acteristic shear resistance, Partial safety factor 2)								
Steel	, Property class 4.6	γ _{Ms,V}	[-]			1,	67		
Steel	, Property class 4.8	γ _{Ms,V}	[-]	1,25					
Steel	, Property class 5.6	γMs,∨	[-]			1,	67		
Steel	, Property class 5.8	γMs,V	[-]			1,	25		
Steel, Property class 8.8		γMs,∨	[-]	1,25					
Stain	less steel A2, A4 and HCR, Property class 50 50	γMs,V	[-]			2,	38		
	less steel A2, A4 and HCR, Property class 50 70	γMs,V	[-]				56		
	less steel A4 and HCR, Property class 80	$\gamma_{\text{Ms,V}}$	[-]				33		
h	alues are only valid for the given stress area $A_{\rm s}$. Values into dipped threaded rods galvanized according to EN ISO absence of national regulation			aersized t	nreaded ro	ods with s	mailer stre	ess area <i>P</i>	A _s tor

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Performances

WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical

Annex C 1

Anchor size threaded ro	od			M 8	M 10	M 12	M 16	M 20	M 24
Steel failure									
Characteristic tension res	istance	$N_{Rk,s}$	[kN]			A _s • f _{uk} (or se	e Table C1)		
Partial factor		γ _{Ms,N}	[-]			see Ta			
Combined pull-out an	d concrete cone failu	ire							
Characteristic bond resist	tance in uncracked concr	ete C20/25	5						
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	8,5	8,0	8,0	8,0	8,0	8,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,5	8,0	8,0	8,0	8,0	8,0
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	6,5	6,0	6,0	6,0	6,0	6,0
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	6,5	6,0	6,0	6,0	6,0	6,0
			25/30	-,-	-,-	1,0		-,-	-,-
			30/37			1,(
Increasing factors for una	realized asserts		35/45			1,1			
Increasing factors for unc	racked concrete		10/50						
Ψ¢						1,1			
			15/55			1,1			
Ohanastanistia handusaist		I	50/60			1,1	19		
Characteristic bond resist	dry and wet concrete		[N/mm²]	4,5	4,5	4,5	4,5	NF	ο Λ
Temperature range I: 40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,5	4,5	4,5	4,5	NF	
		τ _{Rk,cr}				1		NF	
Temperature range II: 80°C/50°C	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	3,5	3,5	3,5	3,5		
00 0/30 0	flooded bore hole	τ _{Rk,cr}	[N/mm²]	3,5	3,5	3,5	3,5	NF	A
			25/30			1,0			
			30/37			1,0			
Increasing factors for cracked concrete ψ_c		35/45			1,0				
		10/50			1,0				
			15/55 50/60			1,0			
Concrete cone failure			00/00			1,0	<i></i>		
	arata	T _k				11	0		
Factor for uncracked con-		k _{ucr,N}	[-]			11			
Factor for cracked concre	ete	k _{cr,N}	[-]			7,			
Edge distance		C _{cr,N}	[mm]			1,5			
Axial distance		S _{cr,N}	[mm]			2 c	cr,N		
Splitting failure	T		1						
	h/h _{ef} ≥ 2,0					1,0	h _{ef}		
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]			$2 \cdot h_{ef} = 2$	$5-\frac{h}{}$		
· ·						3(h_{ef}		
Axial distance	h/h _{ef} ≤ 1,3		[mm]			2,4			
		S _{cr,sp}	[mm]			2 c	cr,sp		
Installation factor		1					0		
for dry and wet concrete		γinst	[-]			1,			
for flooded bore hole		γinst	[-]			1,	2		

Characteristic values of tension loads under static and quasi-static action

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M 24
Steel failure without lever arm								
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	$V^0_{Rk,s}$	[kN]		0,6	S • A _s • f _{uk} (or	see Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]		0,5	5 • A _s • f _{uk} (or	see Table C	1)	
Partial factor	γ _{Ms,V}	[-]			see Ta	ble C1		
Ductility factor	k ₇	[-]			1	,0		
Steel failure with lever arm								
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]	1,2 • W _{el} • f _{uk} (or see Table C1)					
Partial factor	γ _{Ms,V}	[-]			see Ta	ble C1		
Concrete pry-out failure								
Factor	k ₈	[-]			2	,0		
Installation factor	γ̃inst	[-]			1	,0		
Concrete edge failure	•							
Effective length of fastener	I _f	[mm]			min(h _{ef} ;	12 d _{nom})		
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24
Installation factor	γinst	[-] 1,0						

Würth Injection System for concrete
WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical

Performances
Characteristic values of shear loads under static and quasi-static action

Annex C 3

Anchor size rebar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure										•
Characteristic tension res	istance	$N_{Rk,s}$	[kN]				A _s • f _{uk} ¹⁾			
Cross section area		As	[mm ²]	50	79	113	154	201	314	491
Partial factor		$\gamma_{\text{Ms,N}}$	[-]				1,4 ²⁾			
Combined pull-out an	d concrete cone failu	ire								
Characteristic bond resist	ance in uncracked concr	ete C20/2	5							
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	7,0	6,5	6,5	6,5
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	7,0	7,0	7,0	7,0	6,5	6,5	6,5
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	5,5	5,5	5,5	5,5	5,5	5,0	5,0
80°C/50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	5,5	5,5	5,5	5,5	5,5	5,0	5,0
		С	25/30				1,02			
Increasing factors for uncracked concrete	С	30/37				1,04				
	С	35/45				1,06				
Ψc			40/50	1,07						
			45/55	1,08						
		С	50/60	1,09						
Concrete cone failure										
Factor for uncracked cond	crete	k _{ucr,N}	[-]				11,0			
Edge distance		C _{cr,N}	[mm]				$1,5 h_{ef}$			
Axial distance		S _{cr,N}	[mm]				2 c _{cr,N}			
Splitting failure										
	h/h _{ef} ≥ 2,0						1,0 h _{ef}			
Edge distance										
h/h _{ef} ≤ 1,3							2,4 h _{ef}	-		
Axial distance		S _{cr,sp}	[mm]				2 c _{cr,sp}			
Installation factor										
for dry and wet concrete		γinst	[-]				1,2			
<u> </u>		,	[-]				1,2			

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars 2) in absence of national regulation

Würth Injection System for concrete WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical **Performances**

Annex C 4

Characteristic values of tension loads under static and quasi-static action

Anchor size rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure without lever arm									
Characteristic shear resistance	$V^0_{Rk,s}$	[kN]			(),5 • A _s • f _{uk}	1)		
Cross section area	As	[mm ²]	50	79	113	154	201	314	491
Partial factor	γ̃Ms,V	[-]	1,5 ²⁾						
Ductility factor	k ₇	[-]				1,0			
Steel failure with lever arm									
Characteristic bending moment M ⁰ _{Rk,s} [Nm]					1	,2 • W _{el} • f _u	k ¹⁾		
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534
Partial factor	γ _{Ms,V}	[-]				1,5 ²⁾			
Concrete pry-out failure									
Factor	k ₈	[-]				2,0			
Installation factor	γinst	[-]				1,0			
Concrete edge failure									
Effective length of fastener	I _f	[mm]			min(h _{ef} ;	12 d _{nom})			min(h _{ef} ; 300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25
Installation factor	γinst	[-]	1,0					1	

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Würth Injection System for concrete WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical Annex C 5 **Performances** Characteristic values of shear loads under static and quasi-static action

Table C6: D	Displaceme	nt under tension	load ¹⁾ (th	readed re	od)			
Anchor size threade	d rod		M 8	M 10	M 12	M 16	M 20	M24
Uncracked concrete	C20/25 und	ler static and quasi	-static act	ion				
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,03	0,04	0,05	0,07	0,08	0,10
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,07	0,08	0,08	0,08	0,08	0,10
Temperature range II:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,05
80°C/50°C	$\delta_{\text{N}\infty}\text{-factor}$	[mm/(N/mm²)]	0,15	0,17	0,17	0,17	0,17	0,17
Cracked concrete Ca	20/25 under	static and quasi-st	atic action	1				
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,07	0,08	0,07	0,08	NF	PA
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,13	0,11	0,11	0,10	NF	PA
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,09	0,08	0,07	0,09	NF	PA
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,17	0,14	0,14	0,13	NF	PA

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ (τ : action bond stress for tension)

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C7: Displacement under shear load²⁾ (threaded rod)

				1	1		,	
Anchor size threade	d rod		M 8	M 10	M 12	M 16	M 20	M24
For uncracked con	crete C20/2	5 under static an	d quasi-s	tatic acti	on			
All tomporature renges	δ_{V0} -factor	[mm/kN]	0,02	0,02	0,01	0,01	0,01	0,01
All temperature ranges	δ _{V∞} -factor	[mm/kN]	0,03	0,02	0,02	0,01	0,01	0,01
For cracked concre	ete C20/25 u	ınder static and o	quasi-stat	ic action				
All tomporature renges	δ_{V0} -factor	[mm/kN]	0,05	0,04	0,03	0,01	NF	PA
All temperature ranges	δ _{V∞} -factor	[mm/kN]	0,07	0,06	0,04	0,02	NF	PΑ

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; (V: action shear load)

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Würth Injection System for concrete WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical	
Performances Displacement (threaded rod)	Annex C 6

Table C8: D	Displaceme	nt under tension	load¹) (ı	ebar)						
Anchor size rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Uncracked concrete C20/25 under static and quasi-static action										
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,03	0,06	0,02	0,03	0,05	0,06	0,06	
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,08	0,08	0,08	0,08	0,08	0,08	0,08	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,03	0,06	0,02	0,03	0,05	0,06	0,06	
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,15	0,15	0,15	0,15	0,16	0,16	0,16	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; (τ : action bond stress for tension)

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C9: Displacement under shear load²⁾ (rebar)

Anchor size rebar					Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
For uncracked con	crete C20/2	5 under static an	d quasi	-static a	ction				
All temperature renges	δ _{V0} -factor	[mm/kN]	0,04	0,04	0,01	0,01	0,01	0,01	0,01
All temperature ranges	δ _{V∞} -factor	[mm/kN]	0,05	0,06	0,02	0,02	0,02	0,02	0,02

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; (V: action shear load)

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} \text{-factor } \cdot V;$

Würth Injection System for concrete WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical

Performances

Displacement (rebar)

Annex C 7

Anchor size threade	d rod			M 8	M 10	M 12	M 16	M 20	M 24	
Steel failure					•	•				
Characteristic tension (Seismic C1)	resistance	$N_{\text{Rk,s,eq,C1}}$	[kN]		1,0 •	$N_{Rk,s}$		NP.	A	
Characteristic tension (Seismic C2) Steel, strength class & Stainless Steel A4 an Strength class ≥70	3.8	$N_{Rk,s,eq,C2}$	[kN]	NPA 1,0 • N _{Rk,s}		$N_{Rk,s}$	NPA			
Partial factor		$\gamma_{\text{Ms,N}}$	[-]			see Ta	ble C1			
Combined pull-out	and concrete cone failu	ıre								
Characteristic bond re	esistance in cracked and und	racked con	crete C20/25							
Temperature range I:		τ _{Rk,eq,C1}	[N/mm²]	2,30	2,25	2,30	2,20	NP	Ά	
40°C/24°C	dry and wet concrete	$\tau_{Rk,eq,C2}$	[N/mm²]	NPA 0,75 0,95			NP	'A		
Temperature range II:	and flooded bore hole	$\tau_{Rk,eq,C1}$	[N/mm²]	1,85	1,80	1,80	1,75	NP		
80°C/50°C		τ _{Rk,eq,C2}	[N/mm²]	NI	PA	0,60	, , , , , , , , , , , , , , , , , , , ,			
Increasing factors for	cracked concrete ψ _c	C25/30	to C50/60			1,	0			
Concrete cone failur	e									
Factor for uncracked	concrete	k _{ucr,N}	[-]			11	,0			
Factor for cracked cor	ncrete	k _{cr,N}	[-]			7,				
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]			2 c	or,N			
Splitting failure										
	h/h _{ef} ≥ 2,0					1,0	h _{ef}			
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]			$2 \cdot h_{ef} \left(2, \right)$	$5 - \frac{h}{h_{ef}}$			
	h/h _{ef} ≤ 1,3					2,4				
Axial distance		S _{cr,sp}	[mm]			2 c	er,sp			
Installation factor										
for dry and wet concre	ete	γinst	[-]			1,	2			
for flooded bore hole		γinst	[-]			1,	2			

Würth Injection System for concrete
WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical
Performances

Annex C 8

Characteristic values of tension loads under seismic action (performance category C1 + C2)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M 24	
Steel failure without lever arm		1							
Characteristic shear resistance (Seismic C1)	V ⁰ _{Rk,s,eq,C1}	[kN]		0,7 • \	V ⁰ _{RK,s}		NF	'A	
Characteristic shear resistance (Seismic C2) Steel, strength class 8.8 Stainless Steel A4 and HCR Strength class ≥70	$V^0_{Rk,s,eq,C2}$	[kN]	NF	PA	0,7 •	$V^0_{RK,s}$	NF	'A	
Partial factor	γMs,V	[-]			see Ta	able C1			
Ductility factor	k ₇	[-]	1,0						
Steel failure with lever arm									
Characteristic bending moment	$M^0_{Rk,s,eq,C1}$	[Nm]		No F	erformance	Assessed (N	IPA)		
Characteristic bending moment	M ⁰ _{Rk,s,eq,C2}	[-]		No F	erformance	Assessed (N	IPA)		
Concrete pry-out failure	I	1							
Factor	k ₈	[-]			2	,0			
Installation factor	γinst	[-]	1,0						
Concrete edge failure	l								
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 d _{nom})						
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16			16	20	24	
Installation factor	γinst	[-]	1,0						
Factor for annular gap	$\alpha_{\sf gap}$	[-]			0,5 (1,0)1)			
Use of special washer Annex A 3	ю точиной.								

Table C12: D	isplaceme	ent under tension	load ¹⁾ (th	readed re	od)			
Anchor size threade	d rod		M 8	M 10	M 12	M 16	M 20	M24
Cracked concrete Ca	20/25 under	seismic C1 action						
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,07	0,08	0,07	0,08	NPA	
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,13	0,11	0,11	0,10	NF	PΑ
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,09	0,08	0,07	0,09	NPA	
90°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,17	0,14	0,14	0,13	NF	PΑ

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; (τ : action bond stress for tension)

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C13: Displacement under shear load²⁾ (threaded rod)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	
Cracked concrete C20/25 under seismic C1 action									
All temperature ranges	δ _{V0} -factor	[mm/kN]	0,05	0,04	0,03	0,01	NPA		
	δ _{V∞} -factor	[mm/kN]	0,07	0,06	0,04	0,02	NPA		

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; (V: action shear load)

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Table C14: Displacement under tension load (threaded rod)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20 M24		
Cracked concrete C20/25 under seismic C2 action									
All temperature ranges	δN,eq(DLS)	[mm]	NPA		0,23	0,29	NPA		
	δN,eq(ULS)	[mm]	NPA		0,43	0,55	NPA		

Table C15: Displacement under shear load (threaded rod)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	
Cracked concrete C20/25 under seismic C2 action									
All temperature ranges	δv,eq(DLS)	[mm]	NF	PA	3,6	3,0	NPA		
	$\delta_{\text{V,eq(ULS)}}$	[mm]	NF	PA	7,0	6,6	NP	PΑ	

Würth Injection System for concrete
WIT-VM 210, WIT-VM 210 Blue, WIT-VM 210 Express, WIT-VM 210 Tropical

Performances
Displacements under seismic C1 and C2 action

Annex C 10