

Zulassungsstelle für Bauprodukte und Bauarten Ente di certificazione per prodotti da costruzione e sistemi di

costruzione

Bautechnisches Prüfamt Ente di controllo edilizio

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Un ente di diritto pubblico comune riconosciuto dallo Stato Federale e dei Land tedeschi

Valutazione Tecnica Europea

ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Parte generale

Organismo di valutazione tecnica che rilascia la Valutazione Tecnica Europea:

Denominazione commerciale del prodotto da costruzione

Famiglia di prodotti a cui appartiene il prodotto da costruzione

Fabbricante

Stabilimento di produzione:

La presente Valutazione Tecnica Europea include

La presente Valutazione Tecnica Europea viene rilasciata ai sensi del Regolamento (UE) N. 305/2011, sulla base della

La presente versione sostituisce

Deutsches Institut für Bautechnik

Ancorante Würth W-FAZ e W-FAZ-IG

Ancorante meccanico per uso in calcestruzzo

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Herstellwerk W1, Deutschland

36 pagine compresi 3 allegati che costituiscono parte integrante del documento

EAD 330232-00-0601

ETA-99/0011 pubblicata l'8 aprile 2016

Valutazione Tecnica Europea ETA-99/0011

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Pagina 2 di 36 | 2 ottobre 2018

La Valutazione Tecnica Europea viene pubblicata dall'ente preposto nella propria lingua ufficiale. Le traduzioni della presente Valutazione Tecnica Europea in altre lingue devono essere conformi all'originale, e vanno contrassegnate in quanto tali.

Qualsiasi riproduzione della presente Valutazione Tecnica Europea, inclusa la trasmissione per via elettronica, deve avvenire in versione integrale. La riproduzione parziale è tuttavia ammissibile solo con assenso scritto dell'Organismo di Valutazione Tecnica emittente. In tal caso, la riproduzione parziale dovrà essere contrassegnata come tale.

La presente Valutazione Tecnica Europea può essere ritirata dall'organismo emittente, in particolare conformemente alle informazioni della Commissione, ai sensi dell'Articolo 25 (3) del Regolamento (UE) N. 305/2011.

Z61313.18 8.06.01-685/18

Valutazione Tecnica Europea ETA-99/0011

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Pagina 3 di 36 | 2 ottobre 2018

Parte specifica

1 Descrizione tecnica del prodotto

L'ancorante a espansione W-FAZ e W-FAZ-IG è un ancorante realizzato in acciaio zincato, acciaio inox o acciaio ad alta resistenza alla corrosione, posizionato in un foro e ancorato tramite espansione a controllo di coppia. Sono interessati i seguenti tipi di fissaggi:

- Fissaggio tipo W-FAZ con filettatura esterna, rondella e dado esagonale, dimensioni da M8 a M27,
- Fissaggio tipo W-FAZ-IG S con filetto interno, rondella e dado a testa esagonale, dimensioni da M6 a M12.
- Fissaggio tipo W-FAZ-IG SK con filetto interno, rondella svasata SK-IG e vite a testa svasata, dimensioni da M6 a M12,
- Fissaggio tipo W-FAZ-IG B con filetto interno, rondella MU-IG e dado esagonale, dimensioni da M6 a M12.

La descrizione del prodotto viene fornita nell'Allegato A.

2 Indicazione della destinazione d'uso in conformità al Documento di Valutazione Europea pertinente

Le prestazioni indicate nella Sezione 3 sono valide solo se il fissaggio viene utilizzato in conformità con le specifiche e le condizioni riportate nell'allegato B.

La presente Valutazione Tecnica Europea si basa su metodi di verifica e valutazione che portano a presupporre una durata operativa del fissaggio di almeno 50 anni. Le indicazioni fornite circa la durata operativa non devono interpretarsi come una garanzia fornita dal fabbricante, ma devono essere utilizzate esclusivamente come strumento per la selezione dei prodotti appropriati in relazione alla durata operativa economicamente ragionevole prevista per le opere.

3 Prestazione del prodotto e indicazione dei metodi di valutazione

3.1 Stabilità e resistenza meccanica (BWR 1)

Caratteristica rilevante	Prestazione
Resistenza caratteristica a carico di trazione (carico statico e quasi-statico)	per W-FAZ vedere Allegato C1-C4 per W-FAZ-IG vedere Allegato C11-C12
Resistenza caratteristica a carico di taglio (carico statico e quasi-statico)	per W-FAZ vedere Allegato C5 per W-FAZ-IG vedere Allegato C13
Spostamenti (carichi statici e quasi-statici)	per W-FAZ vedere Allegato C9-C10 per W-FAZ-IG vedere Allegato C15
Resistenza caratteristica e spostamenti per categorie prestazionali sismiche C1 e C2	per W-FAZ vedere Allegato C6, C9 e C10

Z61313.18 8.06.01-685/18

Valutazione Tecnica Europea ETA-99/0011

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Pagina 4 di 36 | 2 ottobre 2018

3.2 Sicurezza in caso di incendio (BWR 2)

Caratteristica rilevante	Prestazione
Reazione al fuoco	Classe A1
Resistenza al fuoco	per W-FAZ vedere Allegato C7-C8 per W-FAZ-IG vedere Allegato C14

4 Valutazione e verifica della costanza della prestazione (AVCP) applicate al sistema, con riferimento alla relativa base giuridica

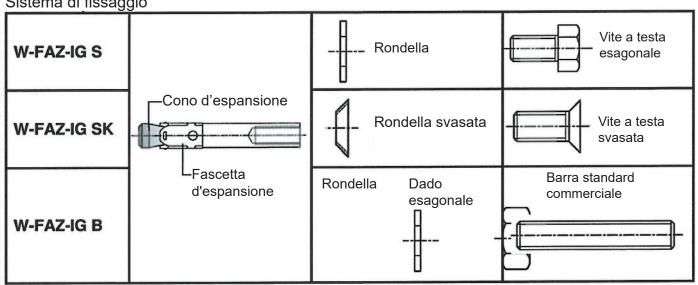
Conformemente al Documento di Valutazione Europea EAD N. 330499-01-0601, la legge europea applicabile è: [96/582/CE]. Il sistema da applicare è: 1

Dettagli tecnici necessari per l'implementazione del sistema AVCP, in conformità al documento EAD pertinente

I dettagli tecnici necessari per applicazione del sistema AVCP sono esposti nel piano di controllo depositato presso l'Österreichisches Institut für Bautechnik.

Pubblicato a Berlino il 2 ottobre 2018 dal Deutsches Institut für Bautechnik

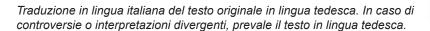
BD Dipl.-Ing. Andreas Kummerow Responsabile del dipartimento


autenticato da: Baderschneider

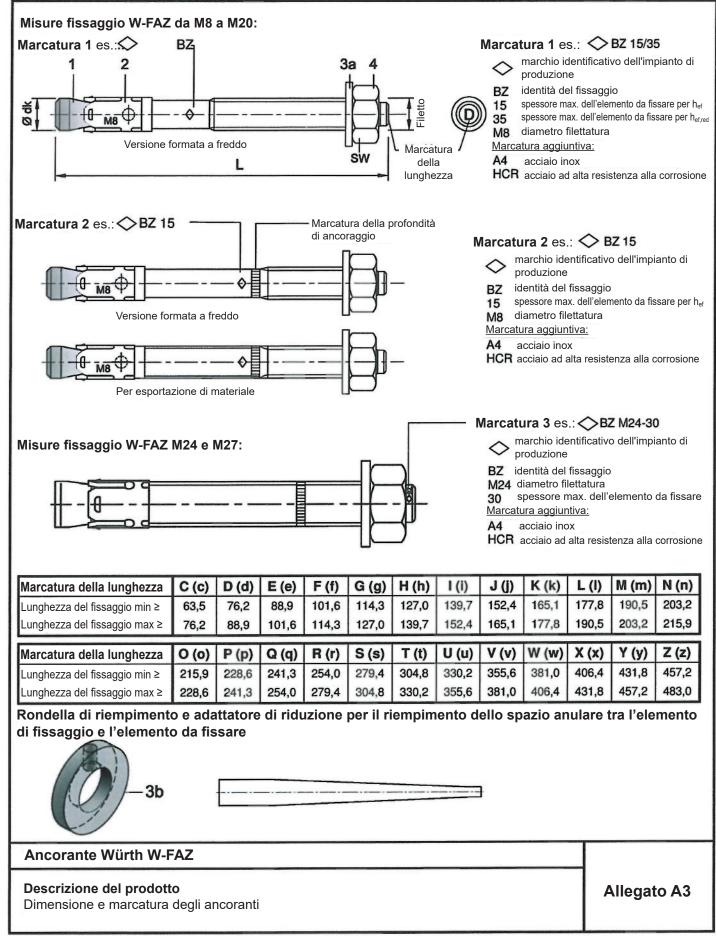
Z61313.18 8.06.01-685/18

Pagina 5 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

	2018 a del testo originale in lingua tede ni divergenti, prevale il testo in lin		
Tipologia di prodotto	Descrizione del prodotto	Destinazione d'uso	Prestazione
W-FAZ	Allegato A1 - Allegato A4	Allegato B1 - Allegato B7	Allegato C1 - Allegato C10
W-FAZ-IG	Allegato A1 Allegato A5 - Allegato A7	Allegato B1 - Allegato Ba M2 Allegato B8 - Allegato B10	Allegato C11 - Allegato C15
Ancorante W-FAZ Cono d'espansione	Fascetta d'espansione	Rondella	Dado esagonale M8 a M20
			M8 a M20 M24 a M27 (solo M27 zincato)
Ancoraggio W-FAZ			
W-FAZ-IG S		Rondella	Vite a testa esagonale



Ancorante Würth W-FAZ e W-FAZ-IG Allegato A 1 Descrizione del prodotto Tipologie di fissaggio


Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Uso previsto dell'ancorante W-FAZ h ≥ hmin,1 bzw. hmin,2 hef tfix trix hef,red h1,red h≥hmin,3 **Ancorante Würth W-FAZ** Allegato A2 Descrizione del prodotto Situazione relativa all'installazione di W-FAZ

Pagina 7 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Pagina 8 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella A1: Dimensioni dell'ancorante W-FAZ

Misura dell'an	corante		M8	M10	M12	M16	M20	M24	M27
Cono d'espans	sione	Filettatura	M8	M10	M12	M16	M20	M24	M27
		Ø d _k =	7,9	9,8	12,0	15,7	19,7	24	28
	Acciaio, zincato	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
Lunghezza	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	-
dell'ancorante ¹⁾	profondità di ancoraggio ridotta	L _{hef,red}	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}	-	-	-
Dado esagonal	le	SW	13	17	19	24	30	36	41

¹⁾ Con uso aggiuntivo della rondella di riempimento 3b lo spessore utilizzabile dell'elemento da fissare si ridurrà di 5 mm

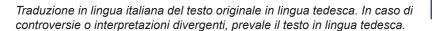
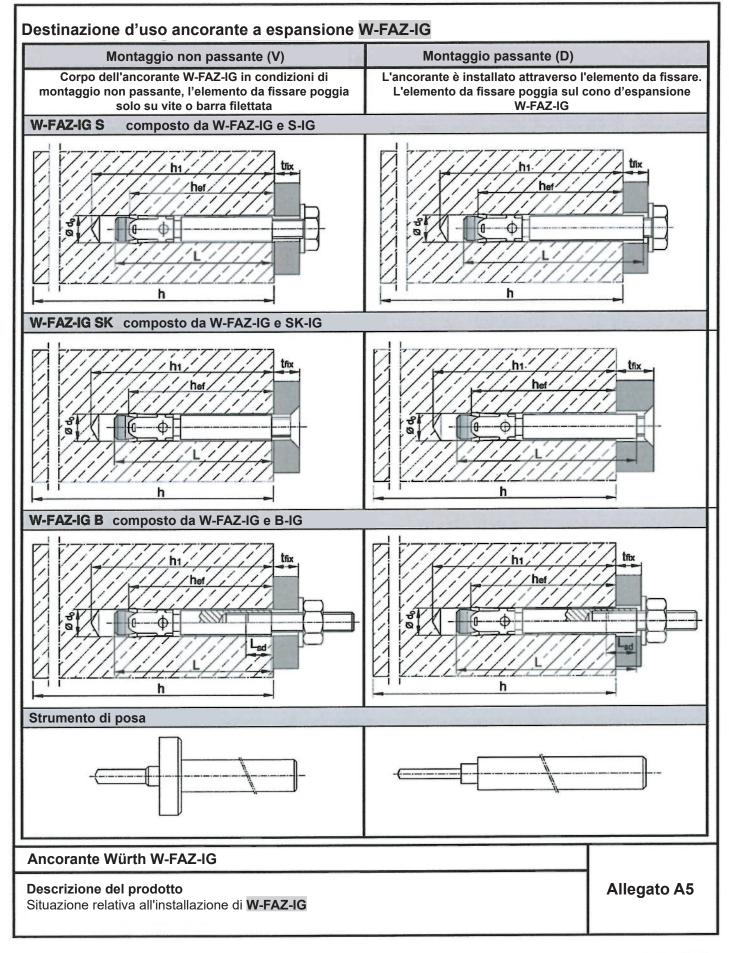

Dimensioni in mm

Tabella A2: Materiali W-FAZ


		W-FAZ/S		W-FAZ/A4	W-FAZ/HCR	
N.	Componente	Acciaio	o, zincato	Elementi in	Acciaio ad alta resistenza alla	
		zincato ≥ 5µm	sherardizzato ≥ 40µm	acciaio inox A4	corrosione (HCR)	
1	Cono d'espansione	da M8 a M20: Acciaio formato a freddo o lavorato a macchina, zincato, cono rivestito di plastica	da M8 a M20: Acciaio formato a freddo o lavorato a macchina, sherardizzato, cono rivestito di plastica	da M8 a M20: Acciaio inox (es. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, cono rivestito di plastica	da M8 a M20: Acciaio ad alta resistenza alla corrosione, 1.4529 o 1.4565, EN 10088:2014, cono rivestito di plastica	
	Perno filettato	M24 e M27:	M24 e M27: acciaio, sherardizzato	M24: Elementi in acciaio inox	M24: Acciaio ad alta resistenza alla	
	Cono filettato	Acciaio, zincato M24 e M27: Acciaio, zincato		(es. 1.4401, 1.4404) EN 10088:2014	corrosione, 1.4529 o 1.4565, EN 10088:2014	
2	Fascetta d'espansione	da M8 a M20: Acciaio (es. 1.4301 o 1.4401) EN 10088:2014, M24 e M27: Acciaio conf. a EN 10139:1997	da M8 a M20: Acciaio (es. 1.4301 o 1.4401) EN 10088:2014, M24 e M27: Acciaio conf. a EN 10139:1997	Acciaio inox (es. 1.4401, 1.4404, 1.4571) EN 10088:2014	Acciaio inox (es. 1.4401, 1.4404, 1.4571) EN 10088:2014	
3a	Rondella	Acciaio, zincato	Acciaio, zincato	Acciaio inox (es. 1.4401,	Acciaio ad alta resistenza alla corrosione, 1.4529 o	
3b	Rondella di riempimento	,	,	1.4571) EN 10088:2014	1.4565, EN 10088:2014	
4	Dado esagonale	Acciaio, zincato, rivestito	Acciaio, zincato	Acciaio inox (es. 1.4401, 1.4571) EN 10088:2014, rivestito	Acciaio ad alta resistenza alla corrosione, 1.4529 o 1.4565, EN 10088:2014, rivestito	

Ancorante Würth W-FAZ Descrizione del prodotto Dimensioni e materiali Allegato A4

Pagina 9 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Pagina 10 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Deutsches

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

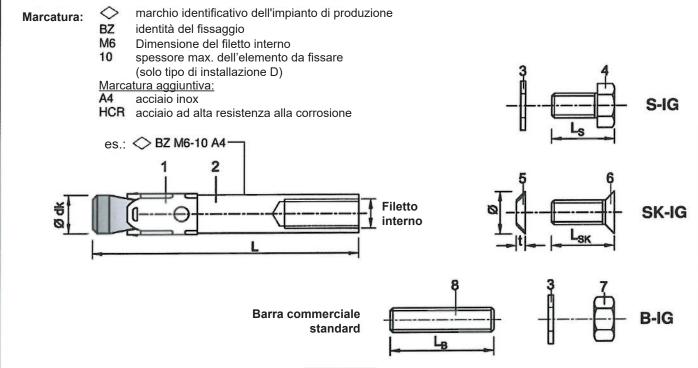


Tabella A3: Dimensioni dell'ancorante W-FAZ-IG

N.	Misure dell'ancorante		М6	M8	M10	M12
	Perno a cono con filetto interno Tipo di installazione V Description Ø d _k		7,9	9,8	11,8	15,7
1			50	62	70	86
	Tipo di installazione D	L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Fascetta d'espansione			vedere T	abella A4	
3	Rondella			vedere T	abella A4	
	I Vito a toeta ocadonalo -	ezza piano trasversale	10	13	17	19
4	Tipo di installazione V	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Tipo di installazione D Ls		14 to 20	18 to 22	20 to 22	25 to 28
5	Ø svasatura		17,3	21,5	25,9	30,9
5	Rondella svasata	t	3,9	5,0	5,7	6,7
6	Vite a testa dimension	one punta	Torx T30	Torx T45 (Acciaio, zincato) T40 (Acciaio inox A4, HCR)	Boccola esagonale 6 mm	Boccola esagonale 8 mm
	Tipo di installazione V	L _{SK}	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Tipo di installazione D		16 to 20	20 to 25	25	30
7	Dado esagonale	Chiave	10	13	17	19
	Barra commerciale tipo V	L _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
8	standard ¹⁾ tipo D	L _B ≥	21	28	34	41

1) conf. alle specifiche (Tabella A4)

Dimensioni in mm

Ancorante Würth W-FAZ-IG

Descrizione del prodotto

Componenti dell'ancorante, marcatura e dimensioni W-FAZ-IG

Allegato A6

Pagina 11 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

			14/ EA 7 10
labella	A4:	Materiali	W-FAZ-IG

		W-FAZ-IG/S	W-FAZ-IG/A4	W-FAZ-IG/HCR
N.	Componente	Acciaio, zincato ≥ 5 µm conf. a EN ISO 4042:1999	Acciaio inox A4	Acciaio ad alta resistenza alla corrosione HCR
1	Cono d'espansione W-FAZ- IG con filetto interno	Acciaio lavorato a macchina, cono rivestito di plastica	Elementi in acciaio inox (es. 1.4401,1.4404, 1.4571, 1.4362) EN 10088:2014, cono rivestito di plastica	Acciaio ad alta resistenza alla corrosione, 1.4529, 1.4565, EN 10088:2014, cono rivestito di plastica
2	Fascetta d'espansione W-FAZ-IG	Elementi in acciaio inox (es. 1.4301, 1.4401) EN 10088:2014	Elementi in acciaio inox (es. 1.4401, 1.4571) EN 10088:2014	Elementi in acciaio inox (es. 1.4401,1.4571) EN 10088:2014
3	Rondella S-IG / B-IG	Acciaio, zincato	Acciaio inox (es. 1.4401,1.4571) EN 10088:2014	Acciaio ad alta resistenza alla corrosione, 1.4529, 1.4565, EN 10088:2014
4	Vite a testa esagonale S-IG	Acciaio, zincato, rivestito	Acciaio inox (es. 1.4401, 1.4571) EN 10088:2014, rivestito	Acciaio ad alta resistenza alla corrosione, 1.4529, 1.4565, EN 10088:2014, rivestito
5	Rondella svasata SK-IG	Acciaio, zincato	Acciaio inox (es. 1.4401, 1.4404, 1.4571) EN 10088:2014, zincato, rivestito	Acciaio ad alta resistenza alla corrosione, 1.4529, 1.4565, EN 10088:2014, zincato, rivestito
6	Vite a testa svasata SK-IG	Acciaio, zincato rivestito	Acciaio inox (es. 1.4401, 1.4571) EN 10088:2014, rivestito	Acciaio ad alta resistenza alla corrosione, 1.4529, 1.4565, EN 10088:2014, rivestito
7	Dado esagonale B-IG	Acciaio, zincato rivestito	Acciaio inox (es. 1.4401, 1.4571) EN 10088:2014, rivestito	Acciaio ad alta resistenza alla corrosione, 1.4529, 1.4565, EN 10088:2014, rivestito
8	Barra commerciale standard	Classe di resistenza 8.8, EN ISO 898-1:2013 Duttilità A₅ > 8 %	Elementi in acciaio inox (es. 1.4401, 1.4571) EN 10088:2014, Classe di resistenza 70 EN ISO 3506:2009	Acciaio ad alta resistenza alla corrosione, 1.4529, 1.4565, EN 10088:2014, Classe di resistenza 70 EN ISO 3506:2009

Descrizione del prodotto Materiali **W-FAZ-IG** Allegato A7

Pagina 12 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Specifiche della destinazione d'uso:

Ancoraggio W-FAZ							
Profondità di ancoraggio standard	M8	M10	M12	M16	M20	M24	M27
Acciaio, zincato	✓						
Acciaio, sherardizzato	✓						
Acciaio inox A4 e acciaio ad alta resistenza alla corrosione HCR	· -				-		
Azione statica o quasi-statica	✓						
Esposizione al fuoco	✓						
Azione sismica (C1 e C2) ¹⁾	√					-	

Profondità di ancoraggio ridotta 1)	M8	M10	M12	M16
Acciaio, zincato		,	/	
Acciaio, sherardizzato		,	/	
Acciaio inox A4 e acciaio ad alta resistenza alla corrosione HCR	✓			
Azione statica o quasi-statica	✓			
Esposizione al fuoco	✓			
Azione sismica (C1 e C2)			-	

¹⁾ solo ancoraggi formati a freddo, conf. ad Allegato A3

Ancoraggio W-FAZ-IG	М6	M8	M10	M12
Acciaio, zincato	√			
Acciaio inox A4 e acciaio ad alta resistenza alla corrosione HCR		•	/	
Azione statica o quasi-statica	✓			
Esposizione al fuoco	√			
Azione sismica (C1 e C2)			_	

Materiale base (o materiale di supporto o semplicemente supporto):

- Calcestruzzo di peso normale armato e non armato compattato (senza fibre) conformemente a EN 206:2013
- Classi di resistenza da C20/25 a C50/60 conformi a EN 206:2013
- Calcestruzzo fessurato e non fessurato

Condizioni d'uso (condizioni ambientali):

- Strutture soggette a condizioni d'uso in luoghi chiusi e asciutti (acciaio zincato, acciaio inox o acciaio ad alta resistenza alla corrosione).
- Strutture soggette a condizioni d'uso in luogo esterno esposto agli agenti atmosferici compresi ambienti marini e industriali e luoghi al chiuso caratterizzati da umidità continua, se non sussistono particolari condizioni aggressive (acciaio inox o acciaio ad alta resistenza alla corrosione).
- Strutture soggette a condizioni d'uso in luogo esterno esposto agli agenti atmosferici e in luoghi al chiuso caratterizzati da umidità continua, se sussistono particolari condizioni aggressive (acciaio ad alta resistenza alla corrosione).

Nota: Le condizioni particolarmente aggressive sono, ad esempio, immersione permanente o alternata in acqua di mare o posizione in zone soggette a schizzi di acqua marina, atmosfera con presenza di cloro delle piscine al coperto o atmosfera caratterizzata da inquinamento chimico estremo (es. impianti di desolforazione o gallerie stradale dove vengono impiegati materiali antighiaccio).

Ancorante Würth W-FAZ e W-FAZ-IG

Destinazione d'uso

Specifiche

Allegato B1

Pagina 13 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Specifiche della destinazione d'uso:

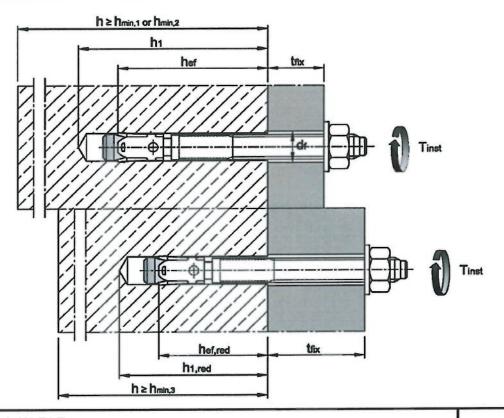
Progettazione:

- Gli ancoraggi sono progettati sotto la responsabilità di un ingegnere esperto nel campo degli ancoraggi e delle opere in calcestruzzo.
- Le note e i disegni di calcolo verificabili vengono preparati tenendo conto dei carichi da ancorare. La posizione del fissaggio è indicata sui disegni di progetto (es. posizione del fissaggio relativa all'armatura o ai supporti ecc.).
- Dimensionamento di fissaggi sotto azione statica o quasi statica, azione sismica o esposizione a fuoco conformemente a FprEN 1992-4: 2016 congiuntamente a TR 055.

Installazione:

- Installazione del fissaggio eseguita da personale adeguatamente qualificato e sotto la supervisione del responsabile delle questioni tecniche sul campo.
- Perforazione tramite trapano a percussione o con punta ad aspirazione.
- L'ancorante va usato solo come viene fornito dal produttore, senza cambiarne i componenti.
- In via opzionale, lo spazio anulare tra l'elemento da fissare e il tassello del W-FAZ può essere riempito per ridurre il gioco. A tale scopo, la rondella di riempimento (3b) deve essere usata in aggiunta a quella in dotazione (3a). Per il riempimento usare resina ad alta resistenza con resistenza a compressione > 50N/mm2 (es. WIT-VM 100, WIT-VIZ, WIT-Express, WIT-VIZ Express, WIT- VM 250, WIT-UH 300, WIT-Nordic).
- In caso di foro mal riuscito: eseguire un nuovo foro a una distanza minima pari al doppio della profondità del foro non riuscito, o a una distanza inferiore se quest'ultimo è stato riempito di resina ad alta resistenza e, se sottoposto a carico di trazione obliqua o di taglio, non si trova nella direzione di applicazione del carico.

Ancorante Würth W-FAZ e W-FAZ-IG	
Destinazione d'uso Specifiche	Allegato B2


Pagina 14 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella B1:	Parametri	di installazione.	W-FA7

Misure dell'	ancorante			M8	M10	M12	M16	M20	M24	M27
Diametro nomi	nale foro	d _o	[mm]	8	10	12	16	20	24	28
Diametro della	punta di perforazione	d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
assemments of the	Acciaio, zincato	T _{inst}	[Nm]	20	25	45	90	160	200	300
Coppia di	Acciaio, sherardizzato	T _{inst}	[Nm]	16	22	40	90	160	260	300
serraggio	Elementi in acciaio inox A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	-
Diametro del fo	•	d₁ ≤	[mm]	9	12	14	18	22	26	30
Profondità d	i ancoraggio standard			70,50						
Profondità	Acciaio, zincato	h₁ ≥	[mm]	60	75	90	110	125	145	160
del foro	Acciaio inox A4, HCR	h₁ ≥	[mm]	60	75	90	110	125	155	-
Profondità di	Acciaio, zincato	h _{ef}	[mm]	46	60	70	85	100	115	125
ancoraggio effettiva	Acciaio inox A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	-
Profondità d	i ancoraggio ridotta			allendi.						
Profondità del	foro	h _{1,red} ≥	[mm]	49	55	70	90			
Profondità di a	ncoraggio effettiva	h _{ef,red}	[mm]	35	40	50	65	-	-	-

Ancorante Würth W-FAZ

Destinazione d'usoParametri di installazione

Allegato B3

Pagina 15 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Misure dell'ancorante			M8	M10	M12	M16	M20	M24	M27
Spessore standard del support	o di calcest	ruzzo							
Acciaio zincato									
Spessore standard del supporto	h _{min,1}	[mm]	100	120	140	170	200	230	250
Calcestruzzo fessurato							,		
nterasse minimo	Smin	[mm]	40	45	60	60	95	100	125
	per c ≥	[mm]	70	70	100	100	150	180	300
Distanza minima dal bordo	C _{min}	[mm]	40	45	60	60	95	100	180
	per s ≥	[mm]	80	90	140	180	200	220	540
Calcestruzzo non fessurato				15	- 00	C.F.	00	100	105
nterasse minimo	Smin	[mm]	40	45	60	65	90	100 180	125
	per c ≥	[mm]	80	70	120	120	180	100	300 180
Distanza minima dal bordo	C _{min}	[mm]	50	50	75	80	130 240	220	540
	per s ≥	[mm]	100	100	150	150	240	220	540
Acciaio inox A4, HCR	L	[m-1	100	100	140	160	200	250	_
Spessore standard del supporto	h _{min,1}	[mm]	100	120	140	100	200	200	
Calcestruzzo fessurato	_	[mm]	40	50	60	60	95	125	
Interasse minimo	Smin	[mm]	70	75	100	100	150	125	
	per c ≥	[mm] [mm]	40	55	60	60	95	125	-
Distanza minima dal bordo		[mm]	80	90	140	180	200	125	-
Calcestruzzo non fessurato	per 3 2	[iiiii]	- 00	- 00	110	100			
Calcestruzzo non ressurato	S _{min}	[mm]	40	50	60	65	90	125	
Interasse minimo	per c ≥	[mm]	80	75	120	120	180	125	
		-	50	60	75	80	130	125	-
Distanza minima dal bordo	C _{min}	[mm]	100	120	150	150	240	125	
0	per s ≥	[mm]	100	120	130	150	240	120	
Spessore minimo del supporto	-	JZZO							
Acciaio zincato, acciaio inox, A		[mm]	90	100	120	140			
Spessore minimo del supporto Calcestruzzo fessurato	h _{min,2}	[mm]	80	100	120	140			
Calcestruzzo lessurato		[mm]	40	45	60	70			
Interasse minimo	Smin	[mm] [mm]	70	90	100	160			
	per c ≥	[mm]	40	50	60	80	-		-
Distanza minima dal bordo	c _{min} pers≥	[mm]	80	115	140	180			
Calcestruzzo non fessurato	pci 3 2	[iiiiii] [- 00	1 10	1 10				
Carcestruzzo non ressurato	S _{min}	[mm]	40	60	60	80			
Interasse minimo	per c ≥	[mm]	80	140	120	180			
		[mm]	50	90	75	90	2	-	-
Distanza minima dal bordo	c _{min} pers≥	[mm]	100	140	150	200			
	per s ≥	finni) l	100	140	100	200			
Esposizione al fuoco su un lato			r						
nterasse minimo	S _{min.fi}	[mm]					ıra ambien		
Distanza minima dal bordo	C _{min,fi}	[mm]			Vedere	temperatu	ıra ambien	te normale	-
Esposizione al fuoco su più di l	un lato								
nterasse minimo	S _{min,fi}	[mm]			Vedere		ıra ambien	te normale	
Distanza minima dal bordo	C _{min,fi}	[mm]				≥ 300	mm		
/alori intermedi tramite interpolazion	e lineare.								

Allegato B4

Destinazione d'uso

Interassi e distanze dal bordo minimi per profondità di ancoraggio standard

Pagina 16 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella B3:	Interassi e distanze	dal bordo minimi,	, profondità di ancoraç	ggio ridotta, W-FAZ

Misure dell'ancorante			M8	M10	M12	M16	
Spessore minimo del supporto di calcestruzzo	o h _{min,3}	[mm]	80	80	100	140	
Calcestruzzo fessurato			in and the second of				
Laterana	S _{min}	[mm]	50	50	50	65	
Interasse minimo	per c ≥	[mm]	60	100	160	170	
Distance wining dellarate	C _{min}	[mm]	40	65	65	100	
Distanza minima dal bordo	per S ≥	[mm]	185	180	250	250	
Calcestruzzo non fessurato							
	S _{min}	[mm]	50	50	50	65	
Interasse minimo	per c ≥	[mm]	60	100	160	170	
	C _{min}	[mm]	40	65	100	170	
Distanza minima dal bordo	per s ≥	[mm]	185	180	185	65	
Esposizione al fuoco su un lato							
Interasse minimo	S _{min,fi}	[mm]	V	/edere temperatu	ura ambiente nor	male	
Distanza minima dal bordo	C _{min,fi}	[mm]	[mm] Vedere temperatura ambiente normale				
Esposizione al fuoco su più di un lato							
Interasse minimo	S _{min,fi}	[mm]	V	/edere temperatu	ıra ambiente nor	male	
Distanza minima dal bordo	C _{min,fi}	[mm]		≥ 300	0 mm		

Valori intermedi tramite interpolazione lineare.

Ancorante Würth W-FAZ

Destinazione d'uso Interassi e distanze dal bordo minimi per profondità di ancoraggio ridotta Allegato B5

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Istruzioni per l'installazione W-FAZ Foro perpendicolare alla superficie di calcestruzzo. Se si usa un trapano con punta ad aspirazione, procedere con il Punto 3. Soffiare via la polvere. In alternativa pulire con aspirapolvere fino al fondo del foro. Controllare la posizione del dado. Inserire l'ancorante in modo da rispettare la profondità hef o hef,red. Tale rispetto è garantito se lo spessore dell'elemento da fissare non è maggiore del relativo spessore massimo segnato sul fissaggio, secondo quanto indicato nell'Allegato A3. Tinst La coppia di serraggio T_{inst} verrà applicata usando una chiave 5 dinamometrica opportunamente calibrata.

Ancorante Würth W-FAZ	
Destinazione d'uso Istruzioni per l'installazione	Allegato B6

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Istru	uzioni per l'installazion	e W-FAZ con riempimento dello spazio anulare
1	900	Foro perpendicolare alla superficie di calcestruzzo. Se si usa un trapano con punta ad aspirazione, procedere con il Punto 3a.
2		Soffiare via la polvere. In alternativa pulire con aspirapolvere fino al fondo del foro.
3a		Controllare la posizione del dado.
3b		Inserire la rondella di riempimento sull'ancorante. Lo spessore della rondella di riempimento deve essere considerato con t_{fix} .
4		Inserire l'ancorante con la rondella di riempimento, in modo tale da rispettare la profondità h _{ef} o h _{ef,red} . Questo è garantito se lo spessore dell'elemento da fissare è più piccolo di 5 mm del relativo spessore massimo segnato sul fissaggio, secondo quanto indicato nell'Allegato A3.
5	T _{inst}	La coppia di serraggio T _{inst} deve essere applicata usando una chiave dinamometrica opportunamente calibrata.
6		Riempire lo spazio anulare tra l'elemento filettato e l'elemento da fissare con resina (forza di compressione ≥ 50 N/mm² es. WIT-VM 100, WIT-VIZ, WIT-Express, WIT-VIZ Express, WIT-VM 250, WIT-UH 300, WIT-Nordic). Usare l'adattatore di riduzione incluso. Attenersi alle istruzioni d'impiego della resina! Lo spazio anulare è completamente pieno quando fuoriesce la resina in eccesso.

Ancorante	Würth	W-FA7
Ancorante	wultii	VV-FAZ

Destinazione d'uso

Istruzioni per l'installazione con rondella di riempimento

Allegato B7

Pagina 19 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella B4: Pa	rametri di insta	Ilazione W-FAZ-IG
----------------	------------------	-------------------

Misure dell'ancorante			M6	M8	M10	M12
Profondità di ancoraggio effettiva	h _{ef}	[mm]	45	58	65	80
Diametro foro	do	[mm]	8	10	12	16
Diametro della punta di perforazione	d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5
Profondità del foro	h₁ ≥	[mm]	60	75	90	105
Profondità di avvitamento della barra filettata	$L_{sd}^{(2)} \ge$	[mm]	9	12	15	18
	S	[Nm]	10	30	30	55
Coppia di serraggio, acciaio T _{inst}	SK	[Nm]	10	25	40	50
zincato	В	[Nm]	8	25	30	45
	S	[Nm]	15	40	50	100
Coppia di serraggio, acciaio	SK	[Nm]	12	25	45	60
inox A4, HCR	В	[Nm]	8	25	40	80
Tipo di installazione V (montaggio non passa	nte)			-		
Diametro del foro passante nell'elemento da fissare	d₁ ≤	[mm]	7	9	12	14
·	S	[mm]	1	1	1	1
Spessore minimo dell'elemento da fissare t _{fix} ≥	SK	[mm]	5	7	8	9
	В	[mm]	1	1	1	1
Tipo di installazione D (montaggio passante)					***	
Diametro del foro passante nell'elemento da fissare	d _f ≤	[mm]	9	12	14	18
	S	[mm	5	7	8	9
Spessore minimo dell'elemento da fissare ¹) t _{fix} ≥	SK	[mm]	9	12	14	16
-	В	[mm]	5	7	8	9

¹⁾ Lo spessore minimo dell'elemento da fissare può essere ridotto al valore del tipo di installazione V, se il carico di taglio alla rottura dell'acciaio è progettato con il braccio di leva.

Tabella B5: Interassi e distanze dal bordo minimi W-FAZ-IG

Misure dell'ancorante			M6	M8	M10	M12
Spessore minimo del supporto di calcestruzzo	h _{min}	[mm]	100	120	130	160
Calcestruzzo fessurato						
	S _{min}	[mm]	50	60	70	80
nterasse minimo	per c ≥	[mm]	60	80	100	120
D	C _{min}	[mm]	50	60	70	80
Distanza minima dal bordo	per s ≥	[mm]	75	100	100	120
Calcestruzzo non fessurato						
Interasse minimo	S _{min}	[mm]	50	60	65	80
	per c ≥	[mm]	80	100	120	160
Distance minime del borde	C _{min}	[mm]	50	60	70	100
Distanza minima dal bordo	per s ≥	[mm]	115	155	170	210
Esposizione al fuoco su un lato						
Interasse minimo	S _{min,fi}	[mm]	\	/edere tempe	ratura normale)
Distanza minima dal bordo	C _{min,fi}	[mm]	\	/edere tempe	ratura normale	•
Esposizione al fuoco su più di un lato						
Interasse minimo	S _{min,fi}	[mm]	\	/edere tempe	ratura normale)
Distanza minima dal bordo	C _{min,fi}	[mm] ≥ 300 mm				
alori intermedi tramite interpolazione lineare.				100000		

Ancorante Würth W-FAZ-IG

Destinazione d'uso

Parametri di installazione, interassi e distanze minimi dal bordo W-FAZ-IG

Allegato B8

²⁾ Vedere Allegato A5

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Istruzioni per l'installazione W-FAZ-IG Montaggio non passante Foro perpendicolare alla superficie di calcestruzzo. Se si usa un trapano con punta ad aspirazione, procedere con il Punto 3. Soffiare via la polvere. In alternativa pulire con aspirapolvere fino al fondo del 2 foro. Inserire lo strumento di posa per montaggio non passante nell'ancorante. Inserire l'ancorante con lo strumento di posa. Inserire la vite. Tinst La coppia di serraggio T_{inst} può essere applicata usando una chiave dinamometrica opportunamente calibrata. **Ancorante Würth W-FAZ-IG**

Allegato B9

Destinazione d'uso

Istruzioni per montaggio non passante W-FAZ-IG

Ancorante Würth W-FAZ-IG

Istruzioni per montaggio passante W-FAZ-IG

Destinazione d'uso

Deutsches
Institut
für
Bautechnik

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Istruzioni per l'installazione W-FAZ-IG Montaggio passante Foro perpendicolare alla superficie di calcestruzzo. Se si usa un trapano con punta ad aspirazione, procedere con il Punto 3. Soffiare via la polvere. In alternativa pulire con aspirapolvere fino al fondo del foro. 3 Inserire lo strumento di posa per montaggio passante nell'ancorante Inserire l'ancorante con lo strumento di posa. BZ-IGS Inserire la vite. La coppia di serraggio T_{inst} può essere applicata usando una chiave dinamo-6 metrica opportunamente calibrata.

Z61029.18 8.06.01-685/18

Allegato B10

Pagina 22 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C1: Valori caratteristici per carichi di trazione, W-FAZ zincato, calcestruzzo fessurato, azione statica e quasi-statica

Misure dell'ancorante			M8	M10	M12	M16	M20	M24	M27
Fattore di installazione	Yinst	[-]				1,0			
Rottura dell'acciaio									e arana si ullawa sa
Resistenza caratteristica	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Fattore parziale	γмs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Profondità di ancoraggio standar	d								
Resistenza caratteristica nel calcestruzzo fessurato C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	1)	1)
Profondità di ancoraggio ridotta									
Resistenza caratteristica nel calcestruzzo fessurato C20/25	$N_{Rk,p}$	[kN]	5	7,5	1)	1)	-	-	-
Fattore di incremento per N _{Rk,p}	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Rottura conica del calcestruzzo									
Profondità di ancoraggio effettiva	h _{ef}	[mm]	46	60	70	85	100	115	125
Profondità di ancoraggio ridotta	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-	+	-
Fattore per calcestruzzo fessurato	$k_1 = k_{cr,N}$	[-]				7,7			

¹⁾ Pull-out non è decisivo

Ancorante Würth W-FAZ

Prestazione

Valori caratteristici per **carichi di trazione**, **W-FAZ zincato**, **calcestruzzo fessurato**, azione statica e quasi-statica

²⁾ Uso limitato al fissaggio di componenti strutturali indefiniti staticamente

Pagina 23 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C2: Valori caratteristici per carichi di trazione, W-FAZ A4/HCR, calcestruzzo fessurato, azione statica e quasi-statica

Misure dell'ancorante			М8	M10	M12	M16	M20	M24
Fattore di installazione	Yinst	[-]				1,0		
Rottura dell'acciaio								
Resistenza caratteristica	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Fattore parziale	γ̃Ms	[-]		1	,5		1,68	1,5
Pull-out								
Profondità di ancoraggio standard								
Resistenza caratteristica nel calcestruzzo fessurato C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	40
Profondità di ancoraggio ridotta								
Resistenza caratteristica nel calcestruzzo fessurato C20/25	$N_{Rk,p}$	[kN]	5	7,5	1)	1)	-	-
Fattore di incremento per N _{Rk,p}	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5		
Rottura conica del calcestruzzo								
Profondità di ancoraggio effettiva	h _{ef}	[mm]	46	60	70	85	100	125
Profondità di ancoraggio ridotta	h _{ef,red}	[mm]	35 ²⁾	40	50	65	4	-
Fattore per calcestruzzo fessurato	$k_1 = k_{cr,N}$	[-]			7	,7		

¹⁾ Pull-out non è decisivo

Ancorante Würth W-FAZ

Prestazione

Valori caratteristici per carichi di trazione, W-FAZ A4/HCR, calcestruzzo fessurato, azione statica e quasi-statica

²⁾ Uso limitato al fissaggio di componenti strutturali indefiniti staticamente

Pagina 24 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C3:	Valori caratteristici per carichi di trazione, W-FAZ zincato,	
	calcestruzzo non fessurato, sottoposto ad azione statica e quasi statica	ì

Misure dell'ancorante			M8	M10	M12	M16	M20	M24	M27
Fattore di installazione	Yinst	[-]				1,0			
Rottura dell'acciaio			Accesses to the second					180-8/39	
Resistenza caratteristica	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Fattore parziale	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Profondità di ancoraggio standard				FREELS			SANSON IN		
Resistenza caratteristica nel calce- struzzo non fessurato C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	1)	1)	1)
Profondità di ancoraggio ridotta									,
Resistenza caratteristica nel calcestruzzo non fessurato C20/25	$N_{Rk,p}$	[kN]	7,5	9	1)	1)	-	-	-
Fessurazione									
Profondità di ancoraggio standard									
Fessurazione per spessore standard de $C_{\text{cr,sp}}$ può essere interpolato linearmente p								re del caso	1 e 2).
Spessore standard del calcestruzzo	h _{min,1} ≥	[mm]	100	120	140	170	200	230	250
Caso 1									
Resistenza caratteristica nel calcestruzzo non fessurato C20/25	N ⁰ _{Rk,sp}	[kN]	9	12	20	30	40	62,3	50
Distanza dal bordo	C _{cr,sp}	[mm]				1,5 h _{ef}			
Caso 2									
Resistenza caratteristica nel calcestruzzo non fessurato C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	50,5	62,3	70,6
Distanza dal bordo	C _{cr,sp}	[mm]		2	h _{ef}		2,2 h _{ef}	1,5 h _{ef}	2,5 h _{ef}
Fessurazione per spessore minimo	del supp	orto di	calcestru	JZZO					
Spessore minimo del calcestruzzo	h _{min,2} ≥	[mm]	80	100	120	140			
Resistenza caratteristica nel calcestruzzo non fessurato C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	>=	*	-
Distanza dal bordo	C _{cr,sp}	[mm]		2,5	h _{ef}				
Profondità di ancoraggio ridotta									
Spessore minimo del calcestruzzo	h _{min,3} ≥	[mm]	80	80	100	140			
Resistenza caratteristica nel calcestruzzo non fessurato C20/25	N ⁰ _{Rk,sp}	[kN]	7,5	9	17,9	26,5	-	-	-
Distanza dal bordo	C _{cr,sp}	[mm]	100	100	125	150			
Fattore di incremento per $N_{Rk,p}$ e $N^{0}_{Rk,sp}$	ψс			All		$\left(\frac{f_{ck}}{20}\right)^{0,5}$			
Rottura conica del calcestruzzo									
Profondità di ancoraggio effettiva	h _{ef}	[mm]	46	60	70	85	100	115	125
Profondità di ancoraggio ridotta		[mm]	35 ²⁾	40	50	65	-	-	-
Fattore per calcestruzzo non fessurato k						11,0			
Pull-out non è decisivo		.,							

¹⁾ Pull-out non è decisivo

Ancorante Würth W-FAZ

Prestazione

Valori caratteristici per carichi di trazione, W-FAZ zincato, calcestruzzo non fessurato, sottoposto ad azione statica e quasi statica

²⁾ Uso limitato al fissaggio di componenti strutturali indefiniti staticamente

Pagina 25 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C4: Valori caratteristici per carichi di trazione, W-FAZ A4 / HCR, calcestruzzo non fessurato, sottoposto ad azione statica e quasi statica

Misure dell'ancorante			M8	M10	M12	M16	M20	M24
Fattore di installazione	Yinst	[-]		20	1	,0	WINDOWS	
Rottura dell'acciaio								
Resistenza caratteristica	N _{Rk,s}	[kN]	16	27	40	64	108	110
-attore parziale	γMs	[-]		1	,5		1,68	1,5
Pull-out								
Profondità di ancoraggio standard								
Resistenza caratteristica nel calce- struzzo non fessurato C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	1)	1)
Profondità di ancoraggio ridotta	1388							
Resistenza caratteristica in calcestruzzo non fessurato C20/25	$N_{Rk,p}$	[kN]	7,5	9	1)	1)	-	-
Fessurazione								
Profondità di ancoraggio standard	all a		/ white middles					THE.
Fessurazione per spessore standard del s C _{cr,sp} può essere interpolato linearmente per l							giore del cas	o 1 e 2).
Spessore standard del calcestruzzo	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Caso 1							0.000	
Resistenza caratteristica nel calcestruzzo non fessurato C20/25	N ⁰ _{Rk,sp}	[kN]	9	12	20	30	40	-
Distanza dal bordo	C _{cr,sp}	[mm]			1,5	h _{ef}		-
Caso 2								
Resistenza caratteristica nel	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	50,5	70,6
alcestruzzo non fessurato C20/25 Distanza dal bordo	C _{cr,sp}	[mm]	115	125	140	200	220	250
essurazione per spessore minimo del								
Spessore minimo del calcestruzzo	h _{min,2} ≥		80	100	120	140	2	
Resistenza caratteristica nel						OF.		
calcestruzzo non fessurato C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	-	-
Distanza dal bordo	C _{cr,sp}	[mm]		2,5	h _{ef}			
Profondità di ancoraggio ridotta								
Spessore minimo del calcestruzzo	h _{min,3} ≥	[mm]	80	80	100	140		
Resistenza caratteristica nel calcestruzzo non fessurato C20/25	N ⁰ _{Rk,sp}	[kN]	7,5	9	17,9	26,5	-	-
Distanza dal bordo	C _{cr,sp}	[mm]	100	100	125	150		
Fattore di incremento per N _{Rk,p} e N⁰ _{Rk,sp}	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5		
Rottura conica del calcestruzzo								
Profondità di ancoraggio effettiva	h _{ef}	[mm]	46	60	70	85	100	125
Profondità di ancoraggio ridotta	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-	-
attore per calcestruzzo non fessurato		[-]			4.4	,0		

²⁾ Uso limitato al fissaggio di componenti strutturali indefiniti staticamente

Ancorante Würth W-FAZ

Prestazione

Valori caratteristici per carichi di trazione, W-FAZ A4 / HCR, calcestruzzo non fessurato, sottoposto ad azione statica e quasi statica

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C5: Valori caratteristici per carichi di taglio, W-FAZ, calcestruzzo fessurato e non fessurato, azione statica o quasi-statica

Misure dell'ancora	ınte			M8	M10	M12	M16	M20	M24	M27
Fattore di installazion	ne	Yinst	[-]				1,0			
Rottura dell'acciai	o senza braccio d			zincato)					
Resistenza caratteris	stica	$V^0_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Fattore di duttilità	Lore	k ₇	[-]				1,0			
Fattore parziale		γMs	[-]		1,	25		1,33	1,25	1,25
Rottura dell'acciaio	senza braccio di l	eva, ac	ciaio ir	nox A4, H	CR					
Resistenza caratteris	stica	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	123,6	
Fattore di duttilità		k ₇	[-]				1,0			-
Fattore parziale		γмѕ	[-]		1,	25		1,4	1,25	
Rottura dell'acciaio	con braccio di lev	a, acci	aio zino	cato						
Resistenza alla fless	ione caratteristica	M ⁰ _{Rk,s}	[Nm]	23	47	82	216	363	898	1331,5
Fattore parziale		γмѕ	[-]		1,	25		1,33	1,25	1,25
Rottura dell'acciaio	con braccio di lev	a, acci	aio ino	x A4, HCI	R					
Resistenza alla fless	ione caratteristica	M ⁰ _{Rk,s}	[Nm]	26	52	92	200	454	785,4]
Fattore parziale		γмs	[-]		1,	25		1,4	1,25	
Rottura pry-out (sc	alzamento) del cal	cestruz	zo							
Fattore di pry-out (scalz	amento) del calcestruz	zo k ₈	[-]		2,	,4			2,8	
Rottura bordo calco	estruzzo									
Lunghezza effettiva	Acciaio zincato	l,	[mm]	46	60	70	85	100	115	125
dell'ancorante a carico di taglio con h _{ef}	Elementi in acciaio in A4, HCR	ox I,	[mm]	46	60	70	85	100	125	-
Lunghezza effettiva	Acciaio zincato	I _{f,red}	[mm]	35 ¹⁾	40	50	65			_
dell'ancorante a carico di taglio con h _{ef,red}	Elementi in acciaio in A4, HCR	OX I _{f,red}	[mm]	35 ¹⁾	40	50	65			
Diametro esterno de	l fissaggio	d _{nom}	[mm]	8	10	12	16	20	24	27

¹⁾ Uso limitato al fissaggio di componenti strutturali indefiniti staticamente

Ancorante Würth W-FAZ

Prestazione

Valori caratteristici per carichi di taglio, W-FAZ, calcestruzzo fessurato e non fessurato, azione statica o quasi-statica

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C6: Resistenza caratteristica per carico sismico, W-FAZ, profondità di ancoraggio standard, categoria prestazionale C1 e C2

Misure dell'	ancorante			M8	M10	M12	M16	M20
Carichi di tr	azione							
Fattore di ins	tallazione	γinst	[-]	Mahasan and Mahasan		1,0		
Rottura dell	l'acciaio, acciai	o zincato		111 30000				
Resistenza c	aratteristica C1	N _{Rk,s,eq,C1}	[kN]	16	27	40	60	86
Resistenza c	aratteristica C2	N _{Rk,s,eq,C2}	[kN]	16	27	40	60	86
Fattore parzia	ale	γ̃Ms	[-]	1,	53	1	,5	1,6
Rottura dell'	acciaio, acciaio	inox A4, H	CR					
Resistenza c	aratteristica C1	N _{Rk,s,eq,C1}	[kN]	16	27	40	64	108
Resistenza c	aratteristica C2	N _{Rk,s,eq,C2}	[kN]	16	27	40	64	108
Fattore parzia	ale	γмѕ	[-]		1,	5		1,68
Trazione (ac	ciaio zincato, ino	x A4 e HCR)	***************************************				
Resistenza c	aratteristica C1	N _{Rk,p,eq,C1}	[kN]	5	9	16	25	36
Resistenza c	aratteristica C2	N _{Rk,p,eq,C2}	[kN]	2,3	3,6	10,2	13,8	24,4
Carichi di ta	aglio							
Rottura dell'	acciaio senza b	raccio di le	va, ac	ciaio zincato				
Resistenza c	aratteristica C1	V _{Rk,s,eq,C1}	[kN]	9,3	20	27	44	69
Resistenza c	aratteristica C2	V _{Rk,s,eq,C2}	[kN]	6,7	14	16,2	35,7	55,2
Fattore parzia	ale	γмs	[-]		1,	25		1,33
Rottura dell'	acciaio senza b	raccio di le	va, ac	ciaio inox A4	, HCR			
Resistenza c	aratteristica C1	V _{Rk,s,eq,C1}	[kN]	9,3	20	27	44	69
Resistenza c	aratteristica C2	V _{Rk,s,eq,C2}	[kN]	6,7	14	16,2	35,7	55,2
Fattore parzia	ale	γMs	[-]		1,	25		1,4
Fattore per spazio	senza riempimento de spazio anulare	ello α _{gap}	[-]			0,5		
anulare	con riempimento de spazio anulare	ello α_{gap}	[-]			1,0		

Ancorante Würth W-F	AΖ
----------------------------	----

Prestazione

Resistenza caratteristica per carico sismico, W-FAZ, profondità di ancoraggio standard, categoria prestazionale C1 e C2

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C7: Valori caratteristici per carico di taglio e di trazione soggetto a esposizione al fuoco, W-FAZ, profondità di ancoraggio standard, calcestruzzo fessurato e non fessurato da C20/25 a C50/60

Misure dell'and	corante			М8	M10	M12	M16	M20	M24	M27
Carico di trazio	one		AR							
Rottura dell'ac	ciaio									
Acciaio, zincat	to									
WAS ASSESSED.	R30			1,5	2,6	4,1	7,7	9,4	13,6	17,6
Resistenza	R60	.	II-NII	1,1	1,9	3,0	5,6	8,2	11,8	15,3
caratteristica	R90	V _{Rk,s,fi}	[kN]	0,8	1,4	2,4	4,4	6,9	10,0	13,0
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8
Acciaio inox A	4, HCR									
	R30			3,8	6,9	12,7	23,7	33,5	48,2	
Resistenza	R60	. 1	n.A.	2,9	5,3	9,4	17,6	25,0	35,9	<u> </u>
caratteristica	R90	V _{Rk,s,fi}	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	_
	R120			1,6	2,8	4,5	8,4	12,1	17,4	
Carico di taglio	0		400							
Rottura dell'ac	ciaio senza bra	accio c	li leva							
Acciaio, zincat	io									
	R30			1,6	2,6	4,1	7,7	11	16	20,6
Resistenza	R60	,	[kN]	1,5	2,5	3,6	6,8	11	15	19,8
caratteristica	R90	/ _{Rk,s,fi}	[KIN]	1,2	2,1	3,5	6,5	10	15	19,0
	R120			1,0	2,0	3,4	6,4	10	14	18,6
Acciaio inox A	4, HCR									
	R30			3,8	6,9	12,7	23,7	33,5	48,2	
Resistenza	R60	,	[kN]	2,9	5,3	9,4	17,6	25,0	35,9	2
caratteristica	R90	/ _{Rk,s,fi}	[KIA]	2,0	3,6	6,1	11,5	16,4	23,6	
	R120			1,6	2,8	4,5	8,4	12,1	17,4	
Rottura dell'ac	ciaio con braco	cio di l	eva							
Acciaio, zincat	to									
	R30			1,7	3,3	6,4	16,3	29	50	75
Resistenza	R60	1 ⁰ Rk,s,fi	[Nm]	1,6	3,2	5,6	14	28	48	72
caratteristica	R90	Rk,s,fi	[INIII]	1,2	2,7	5,4	14	27	47	69
	R120			1,1	2,5	5,3	13	26	46	68
Acciaio inox A	4, HCR									
	R30			3,8	9,0	19,7	50,1	88,8	153,5	
Resistenza	R60	10 _{Rk,s,fi}	[Nm]	2,9	6,8	14,6	37,2	66,1	114,3	
caratteristica	R90	Rk,s,fi	[IMIII]	2,1	4,7	9,5	24,2	43,4	75,1	
	R120			1,6	3,6	7,0	17,8	32,1	55,5	

Se il pull-out non è decisivo, $N_{Rk,p}$ deve essere sostituito da $N^0_{Rk,c}$ nell'equazione (D.4) e (D.5), FprEN 1992-4.

Ancorante Würth W-FAZ

Prestazione

Valori caratteristici per carico di taglio e di trazione soggetto a esposizione al fuoco, W-FAZ, profondità di ancoraggio standard, calcestruzzo fessurato e non fessurato da C20/25 a C50/60

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C8: Valori caratteristici per carico di taglio e di trazione soggetto a esposizione al fuoco, W-FAZ, profondità di ancoraggio ridotta, calcestruzzo fessurato e non fessurato da C20/25 a C50/60

Misure dell'ancor	ante			M8	M10	M12	M16
Carico di trazione							
Rottura dell'accia	io						
Acciaio, zincato							
	R30			1,5	2,6	4,1	7,7
Resistenza	R60	NI	[kN]	1,1	1,9	3,0	5,6
caratteristica	R90	N _{Rk,s,fi}	[KIN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Acciaio inox A4,	HCR						
	R30			3,2	6,9	12,7	23,7
Resistenza	R60	м.	n-Nn	2,5	5,3	9,4	17,6
caratteristica	R90	N _{Rk,s,fi}	[kN]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Carico di taglio							
Rottura dell'accia	io senza braccio di lev	/a					
Acciaio, zincato							
	R30			1,5	2,6	4,1	7,7
Resistenza	R60	.,	FLA.17	1,1	1,9	3,0	5,6
caratteristica	R90	V _{Rk,s,fi}	[kN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Acciaio inox A4, I	HCR						
	R30			3,2	6,9	12,7	23,7
Resistenza	R60	,,	n.n.	2,5	5,3	9,4	17,6
caratteristica	R90	$V_{Rk,s,fi}$	[kN]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Rottura dell'accia	io con braccio di leva						
Acciaio, zincato							
	R30			1,5	3,3	6,4	16,3
Resistenza	R60	0	rN11	1,2	2,5	4,7	11,9
caratteristica	R90	И ⁰ _{Rk,s,fi}	[Nm]	0,8	1,7	3,0	7,5
	R120			0,6	1,2	2,1	5,3
Acciaio inox A4,	HCR						
	R30			3,2	8,9	19,7	50,1
Resistenza	R60	0	[NIm]	2,6	6,8	14,6	37,2
caratteristica	R90	M ⁰ _{Rk,s,fi}	[Nm]	2,0	4,7	9,5	24,2
	R120		i	1,6	3,6	7,0	17,8

Se il pull-out non è decisivo, $N_{Rk,p}$ deve essere sostituito da $N^0_{Rk,c}$ nell'equazione (D.4) e (D.5), FprEN 1992-4.

Ancorante Würth W-FAZ

Prestazione

Valori caratteristici per carico di taglio e di trazione soggetto a esposizione al fuoco, W-FAZ, profondità di ancoraggio ridotta, calcestruzzo fessurato e non fessurato da C20/25 a C50/60

Pagina 30 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Misure dell'ancorante			М8	M10	M12	M16	M20	M24	M27
Profondità di ancoraggio standard									
Acciaio, zincato									
Carico di trazione nel calcestruzzo fessurato	Ν	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Chastements	δ_{N0}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
Spostamento -	$\delta_{N\infty}$	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Carico di trazione nel calcestruzzo non fessurato	Ν	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Chastemants	δ_{N0}	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
Spostamento -	$\delta_{N\infty}$	[mm]	0,	8	1,4		0,8		1,4
Spostamenti sotto carichi di trazione sismica	C2								
Spostamenti per DLS δ_{N}	.eq.(DLS)	[mm]	2,3	4,1	4,9	3,6	5,1		
Spostamenti per ULS δ _N	N,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2		
Acciaio inox A4, HCR								- Montanger	
Carico di trazione nel calcestruzzo fessurato	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	
	δ_{N0}	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	-
Spostamento	δ _{N∞}	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Carico di trazione nel calcestruzzo non fessurato	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	
	δ_{N0}	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	-
Spostamento	δ _{N∞}	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	
Spostamenti sotto carichi di trazione sismica	C2								
	I.eq(DLS)	[mm]	2,3	4,1	4,9	3,6	5,1		
	I,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2		-
Profondità di ancoraggio ridotta		4-2-3							
Acciaio zincato, acciaio inox, A4, HCR		The second second second			***************************************			XIAMINI	
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0			
	δ_{N0}	[mm]	0,8	0,7	0,5	1,0	-	-	-
Spostamento	δ _{N∞}	[mm]	1,2	1,0	0,8	1,1			
Carico di trazione nel calcestruzzo non fessurato	N	[kN]	3,7	4,3	8,5	12,6			
	δ _{N0}	[mm]	0,1	0,2	0,2	0,2	12	2	_
Spostamento	δ _{N∞}	[mm]	0,7	0,7	0,7	0,7			

Ancorante Würth W-FAZ	
Prestazione Spostamenti sotto carico di trazione	Allegato C9

Pagina 31 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Deutsches
Institut
für
Bautechnik

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Misure dell'ancorante			M8	M10	M12	M16	M20	M24	M27
Profondità di ancoraggio	standard			Shares in the					
Acciaio, zincato									•
Carico di taglio nel calcestru: fessurato e non fessurato	zzo v	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
2125 12 = K272	δ_{V0}	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
Spostamento	δ _{V∞}	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Spostamenti sotto carichi di	taglio sism	ici C2		We Issue					
Spostamenti per DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	3,0	2,7	3,5	4,3	4,7	-	_
Spostamenti per DLS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1		
Acciaio inox A4, HCR				Y 0-311011111					
Carico di taglio nel calcestru: fessurato e non fessurato	zzo v	[kN]	7,3	11,4	17,1	31,4	43,8	70,6 2,8	-
Spostamento	δ_{V0}	[mm]	1,9	2,4	4,0	4,3	2,9		
Spostamento	$\delta_{V\infty}$	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Spostamenti sotto carichi di	taglio sism	ici C2							
Spostamenti per DLS	$\delta_{V,eq(DLS)}$	[mm]	3,0	2,7	3,5	4,3	4,7	_	-
Spostamenti per ULS	$\delta_{V,eq(ULS)}$	[mm]	5,9	5,3	9,5	9,6	10,1		
Profondità di ancoraggio	ridotta							- A Subdiv	
Acciaio, zincato									
Carico di taglio nel calcestru zo fessurato e non fessurato	z- v	[kN]	6,9	11,4	17,1	31,4			
Spostamento	δ_{V0}	[mm]	2,0	3,2	3,6	3,5		-	-
opostaniento	$\delta_{V\infty}$	[mm]	3,0	4,7	5,5	5,3			
Acciaio inox A4, HCR									
Carico di taglio nel calcestru zo fessurato e non fessurato	z- v	[kN]	7,3	11,4	17,1	31,4			
0	δ_{V0}	[mm]	1,9	2,4	4,0	4,3	-	-	-
Spostamento							1 1	I	

Ancorante Würth W-FAZ	
Prestazione Spostamenti sotto carico di trazione	Allegato C10

2,9

 $\delta_{V_{\infty}}$

[mm]

3,6

5,9

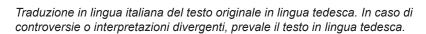
6,4

Spostamento

Pagina 32 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C11: Valori caratteristici per carichi di trazione, W-FAZ-IG, calcestruzzo fessurato, azione statica e quasi statica


Misure dell'ancorante			М6	M8	M10	M12
Fattore di installazione	γinst	[-]	1,2			
Rottura dell'acciaio						
Resistenza caratteristica, acciaio zincato	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6
Fattore parziale	γ _{Ms} [-] 1,5					
Resistenza caratteristica, acciaio inox A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
	γ̃Ms	[-]	1,87			
Rottura pull-out						
Resistenza caratteristica nel calcestruzzo fessurato C20/25	$N_{Rk,p}$	[kN]	5	9	12	20
Fattore di incremento per N _{Rk,p}	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Rottura conica del calcestruzzo						
Profondità di ancoraggio effettiva	h _{ef}	[mm]	45	58	65	80
Fattore per calcestruzzo fessurato	$k_1 = k_{cr,N}$	[-]		7	,7	

Ancorante Würth W-FAZ-IG

Prestazione

Valori caratteristici per carichi di trazione, W-FAZ-IG, calcestruzzo fessurato, azione statica e quasi statica

Pagina 33 della Valutazione Tecnica Europea ETA-99/0011 del 2 ottobre 2018

Tabella C12: Valori caratteristici per carichi di trazione, W-FAZ-IG, calcestruzzo non fessurato, sottoposto ad azione statica e quasi statica

Misure dell'ancorante		M6	M8	M10	M12	
Fattore di installazione	γinst	[-]		1,	,2	
Rottura dell'acciaio			- SALAMAN - SALA			
Resistenza caratteristica, acciaio zincato	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6
Fattore parziale	γMs	[-]		1	,5	
Resistenza caratteristica,ac- ciaio inox A4, HCR	$N_{\text{Rk,s}}$	[kN]	14,1	25,6	35,8	59,0
Fattore parziale	γмѕ	[-]		1,	87	
Pull-out						
Resistenza caratteristica nel calcestruzzo non fessurato C20/25	N _{Rk.p}	[kN]	12	16	20	30
Fessurazione (può essere applicata una resis	tenza mag	ggiore del C	Caso 1 e 2)			
Spessore minimo del supporto di calcestruzzo	h _{min}	[mm]	100	120	130	160
Caso 1		DECEMBER OF THE PROPERTY OF TH				
Resistenza caratteristica nel calcestruzzo non fessurato C20/25	$N^0_{\ Rk,sp}$	[kN]	9	12	16	25
Distanza dal bordo	C _{cr,sp}	[mm]		1,5	i h _{ef}	
Caso 2				William Company		
Resistenza caratteristica nel calcestruzzo non fessurato C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30
Distanza dal bordo	C _{cr,sp}	[mm]	2,5 h _{ef}			
Fattore di incremento per N _{Rk,p} e N ⁰ _{Rk,sp}	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Rottura conica del calcestruzzo						
Profondità di ancoraggio effettiva	h _{ef}	[mm]	45	58	65	80
Fattore per calcestruzzo non fessurato	$K_1 = K_{ucr,N}$	[-]		11	1,0	

Ancorante Würth W-FAZ-IG	
Prestazione Valori caratteristici per carichi di trazione, W-FAZ-IG, calcestruzzo non fessurato, sottoposto ad azione statica e quasi statica	Allegato C12

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C13: Valori caratteristici per carichi di taglio, W-FAZ-IG, calcestruzzo fessurato e non fessurato, sottoposto ad azione statica e quasi-statica

Misure dell'ancorante			M6	M8	M10	M12
Fattore di installazione	γinst	[-]		1	,0	
W-FAZ-IG, acciaio zincato						
Rottura dell'acciaio senza braccio di le	va, tipo di i	installaz	ione V			
Resistenza caratteristica	$V^0_{Rk,s}$	[kN]	5,8	6,9	10,4	25,8
Rottura dell'acciaio senza braccio di le	va, tipo di i	nstallaz	ione D			
Resistenza caratteristica	V ⁰ _{Rk,s}	[kN]	5,1	7,6	10,8	24,3
Rottura dell'acciaio con braccio di leva		stallazio	ne V			
Resistenza alla flessione caratteristica	M ⁰ _{Rk,s}	[Nm]	12,2	30,0	59,8	104,6
Rottura dell'acciaio con braccio di leva	, tipo di ins	stallazio	ne D			
Resistenza alla flessione caratteristica	M ⁰ _{Rk,s}	[Nm]	36,0	53,2	76,0	207
Fattore parziale per V _{Rk,s} e M ⁰ _{Rk,s}	γмѕ	[-]	1,25			
Fattore di duttilità	k ₇	[-]	1,0			
W-FAZ-IG, acciaio inox A4, HCR						
Rottura dell'acciaio senza braccio di le	va, tipo di i	installaz	ione V			
Resistenza caratteristica	$V^0_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6
Fattore parziale	γмѕ	[-]		1,	,25	
Rottura dell'acciaio senza braccio di le	va, tipo di i	nstallaz	ione D		,	
Resistenza caratteristica	$V^0_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6
Fattore parziale	γмs	[-]		1,	,25	
Rottura dell'acciaio con braccio di leva		stallazio	ne V			
Resistenza alla flessione caratteristica	M ⁰ _{Rk,s}	[Nm]	10,7	26,2	52,3	91,6
Fattore parziale	γмѕ	[-]		1,	,56	
Rottura dell'acciaio con braccio di leva		tallazio	ne D	,		
Resistenza alla flessione caratteristica	$M^0_{Rk,s}$	[Nm]	28,2	44,3	69,9	191,2
Fattore parziale	γмs	[-]		1,	,25	
Fattore di duttilità	k ₇	[-]	1,0			
Rottura pry-out (scalzamento) del calces	struzzo					,
Fattore di pry-out (scalzamento) del calcestru	zzo k ₈	[-]	1,5	1,5	2,0	2,0
Rottura bordo calcestruzzo					- THE STATE OF THE	_
Lunghezza effettiva dell'ancorante in carico di ta	aglio I _I	[mm]	45	58	65	80
Diametro effettivo del fissaggio	d _{nom}	[mm]	8	10	12	16

Ancorante	Würth	W-FAZ-IG
------------------	-------	----------

Prestazione

Valori caratteristici per carichi di taglio, W-FAZ-IG, calcestruzzo fessurato e non fessurato, sottoposto ad azione statica e quasi-statica

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C14: Valori caratteristici per carico di taglio e di tensione soggetto a esposizione al fuoco, W-FAZ-IG, calcestruzzo fessurato e non fessurato da C20/25 a C50/60

Misure dell'and	orante		M6	M8	M10	M12
Carico di trazio	ne					
Rottura dell'acc	ciaio					
Acciaio zincato						
	R30		0,7	1,4	2,5	3,7
Resistenza	R60	I III I	0,6	1,2	2,0	2,9
caratteristica	R90 N _{Rk}	_{s,fi} [kN] –	0,5	0,9	1,5	2,2
	R120		0,4	0,8	1,3	1,8
Acciaio inox A	1, HCR					
	R30		2,9	5,4	8,7	12,6
Resistenza	R60	_{0.80}	1,9	3,8	6,3	9,2
caratteristica	R90 N _{Rk}	s,fi [kN]	1,0	2,1	3,9	5,7
	R120		0,5	1,3	2,7	4,0
Carico di taglio			all the same			
Rottura dell'acc	ciaio senza braccio	di leva			1000 U.S.	
Acciaio zincato						
	R30		0,7	1,4	2,5	3,7
Resistenza	R60 V	s.fi [kN]	0,6	1,2	2,0	2,9
caratteristica	R90 V _{Rk}	s,fi [KIN]	0,5	0,9	1,5	2,2
	R120		0,4	0,8	1,3	1,8
Acciaio inox A4	, HCR					
	R30		2,9	5,4	8,7	12,6
Resistenza	R60	II/AII	1,9	3,8	6,3	9,2
caratteristica	R90 V _{Rk}	s,fi [kN]	1,0	2,1	3,9	5,7
	R120		0,5	1,3	2,7	4,0
Rottura dell'acc	ciaio con braccio d	leva				
Acciaio zincato						
	R30		0,5	1,4	3,3	5,7
Resistenza	R60	N=3	0,4	1,2	2,6	4,6
caratteristica	R60 R90	s,fi [Nm]	0,4	0,9	2,0	3,4
	R120		0,3	0,8	1,6	2,8
Acciaio inox A4	, HCR					
	R30		2,2	5,5	11,2	19,6
Resistenza		n	1,5	3,9	8,1	14,3
caratteristica	R90 M ⁰ R	_{s,fi} [Nm]	0,7	2,2	5,1	8,9
	R120		0,4	1,3	3,5	6,2

Ancorante Würth W-FAZ-IG

Prestazione

Valori caratteristici per carico di taglio e di tensione soggetto a esposizione al fuoco, W-FAZ-IG, calcestruzzo fessurato e non fessurato da C20/25 a C50/60

Traduzione in lingua italiana del testo originale in lingua tedesca. In caso di controversie o interpretazioni divergenti, prevale il testo in lingua tedesca.

Tabella C15: Spostamenti sotto carico di trazione, W-FAZ-IG

Misure dell'ancorante			M6	М8	M10	M12
Carico di trazione nel calcestruzzo fessurato	N	[kN]	2,0	3,6	4,8	8,0
Chartementi	δ_{N0}	[mm]	0,6	0,6	0,8	1,0
Spostamenti	$\delta_{N_{\infty}}$	[mm]	0,8	0,8	1,2	1,4
Carico di trazione nel calcestruzzo non fessurato	N	[kN]	4,8	6,4	8,0	12,0
Spostamenti	δ_{N0}	[mm]	0,4	0,5	0,7	0,8
	$\delta_{N\infty}$	[mm]	0,8	0,8	1,2	1,4

Tabella C16: Spostamenti sotto carichi di taglio, W-FAZ-IG

Misure dell'ancorante			М6	M8	M10	M12
Carico di taglio in calcestruzzo fessurato e non fessurato	٧	[kN]	4,2	5,3	6,2	16,9
C	δ_{V0}	[mm]	2,8	2,9	2,5	3,6
Spostamenti	$\delta_{V_{\infty}}$	[mm]	4,2	4,4	3,8	5,3

Ancorante Würth W-FAZ-IG

Prestazione

Spostamenti sotto carico di trazione e di taglio W-FAZ-IG